A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

Randomized Assortment Optimization

When a firm selects an assortment of products to offer to customers, it uses a choice model to anticipate their probability of purchasing each product. In practice, the estimation of these models is subject to statistical errors, which may lead to significantly suboptimal assortment decisions. Recent work has addressed this issue using robust optimization, where … Read more

Partial Policy Iteration for L1-Robust Markov Decision Processes

Robust Markov decision processes (MDPs) allow to compute reliable solutions for dynamic decision problems whose evolution is modeled by rewards and partially-known transition probabilities. Unfortunately, accounting for uncertainty in the transition probabilities significantly increases the computational complexity of solving robust MDPs, which severely limits their scalability. This paper describes new efficient algorithms for solving the … Read more

On Linear Optimization over Wasserstein Balls

Wasserstein balls, which contain all probability measures within a pre-specified Wasserstein distance to a reference measure, have recently enjoyed wide popularity in the distributionally robust optimization and machine learning communities to formulate and solve data-driven optimization problems with rigorous statistical guarantees. In this technical note we prove that the Wasserstein ball is weakly compact under … Read more

Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation

The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing … Read more

Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization

A fundamental problem arising in many areas of machine learning is the evaluation of the likelihood of a given observation under different nominal distributions. Frequently, these nominal distributions are themselves estimated from data, which makes them susceptible to estimation errors. We thus propose to replace each nominal distribution with an ambiguity set containing all distributions … Read more

The Distributionally Robust Chance Constrained Vehicle Routing Problem

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the cost-optimal delivery of a single product to geographically dispersed customers through a fleet of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the customer demands are deterministic, we model the demands as a random vector whose distribution is … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

A Primal-Dual Lifting Scheme for Two-Stage Robust Optimization

Two-stage robust optimization problems, in which decisions are taken both in anticipation of and in response to the observation of an unknown parameter vector from within an uncertainty set, are notoriously challenging. In this paper, we develop convergent hierarchies of primal (conservative) and dual (progressive) bounds for these problems that trade off the competing goals … Read more

K-Adaptability in Two-Stage Mixed-Integer Robust Optimization

We study two-stage robust optimization problems with mixed discrete-continuous decisions in both stages. Despite their broad range of applications, these problems pose two fundamental challenges: (i) they constitute infinite-dimensional problems that require a finite-dimensional approximation, and (ii) the presence of discrete recourse decisions typically prohibits duality-based solution schemes. We address the first challenge by studying … Read more