The dose-volume constraint satisfaction problem for inverse treatment planning with field segments

The prescribed goals of radiation treatment planning are often expressed in terms of dose-volume constraints. We present a novel formulation of a dose-volume constraint satisfaction search for the discretized radiation therapy model. This approach does not rely on any explicit cost function. The inverse treatment planning uses the aperture based approach with predefined, according to … Read more

Transfer function restoration in 3D electron microscopy via iterative data refinement

Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As any other imaging device, the electron microscope introduces a transfer function (called in this field the Contrast Transfer Function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, 3D reconstructions performed with these CTF-affected projections … Read more

Convergence of string-averaging projection schemes for inconsistent convex feasibility problems

We study iterative projection algorithms for the convex feasibility problem of finding a point in the intersection of finitely many nonempty, closed and convex subsets in the Euclidean space. We propose (without proof) an algorithmic scheme which generalizes both the string-averaging algorithm and the block-iterative projections (BIP) method with fixed blocks and prove convergence of … Read more

Mathematical optimization for the inverse problem of intensity modulated radiation therapy

In this tutorial we discuss modeling issues in intensity modulated radiation therapy, contrasting the continuous model with the fully-discretized one and considering feasibility formulations versus optimization setups. We review briefly some mathematical optimization techniques for IMRT. These include global optimization, multi-objective optimization, linear and mixed integer programming and projection methods. Citationin: J.R. Palta and T.R. … Read more

Finding the projection of a point onto the intersection of convex sets via projections onto halfspaces

We present a modification of Dykstra’s algorithm which allows us to avoid projections onto general convex sets. Instead, we calculate projections onto either a halfspace or onto the intersection of two halfspaces. Convergence of the algorithm is established and special choices of the halfspaces are proposed. The option to project onto halfspaces instead of general … Read more

Iterative algorithms with seminorm-induced oblique projections

A definition of oblique projections onto closed convex sets that use seminorms induced by diagonal matrices which may have zeros on the diagonal is introduced. Existence and uniqueness of such projections are secured via directional affinity of the sets with respect to the diagonal matrices involved. A block-iterative algorithmic scheme for solving the convex feasibility … Read more

The least-intensity feasible solution for aperture-based inverse planning in radiation therapy.

Aperture-based inverse planning (ABIP) for intensity modulated radiation therapy (IMRT) treatment planning starts with external radiation fields (beams) that fully conform to the target(s) and then superimposes sub-fields called segments to achieve complex shaping of 3D dose distributions. The segments’ intensities are determined by solving a feasibility problem. The least-intensity feasible (LIF) solution, proposed and … Read more

Reduntant axioms in the definitionof Bregman functions

The definition of a Bregman function, given by Censor and Lent in 1981 on the basis of Bregman’s seminal 1967 paper, was subsequently used in a plethora of research works as a tool for building sequential and inherently parallel feasibility and optimization algorithms. Solodov and Svaiter have recently shown that it is not CitationJournal of … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more

Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem

We formulate a block-iterative algorithmic scheme for the solution of systems of linear inequalities and/or equations and analyze its convergence. This study provides as special cases proofs of convergence of (i) the recently proposed Component Averaging (CAV) method of Censor, Gordon and Gordon ({\it Parallel Computing}, 27:777–808, 2001), (ii) the recently proposed Block-Iterative CAV (BICAV) … Read more