Expert-Enhanced Machine Learning for Cardiac Arrhythmia Classification

We propose a new method for the classification task of distinguishing atrial Fibrillation (AFib) from regular atrial tachycardias including atrial Flutter (AFlu) on the basis of a surface electrocardiogram (ECG). Although recently many approaches for an automatic classification of cardiac arrhythmia were proposed, to our knowledge none of them can distinguish between these two. We … Read more

Stochastic Discrete First-order Algorithm for Feature Subset Selection

This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. (2016) recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more

Branch-and-cut-and-price for the Cardinality-constrained Multi-cycle Problem in Kidney Exchange

The establishment of kidney exchange programs has dramatically improved rates for kidney transplants by matching donors to compatible patients who would otherwise fail to receive a kidney for transplant. Rather than simply swapping kidneys between two patient-donor pairs, having multiple patient-donors pairs simultaneously donate kidneys in a cyclic manner enables all participants to receive a … Read more

A sparse semismooth Newton based augmented Lagrangian method for large-scale support vector machines

Support vector machines (SVMs) are successful modeling and prediction tools with a variety of applications. Previous work has demonstrated the superiority of the SVMs in dealing with the high dimensional, low sample size problems. However, the numerical difficulties of the SVMs will become severe with the increase of the sample size. Although there exist many … Read more

Objective Selection for Cancer Treatment: An Inverse Optimization Approach

In radiation therapy treatment-plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem … Read more

On Polyhedral and Second-Order-Cone Decompositions of Semidefinite Optimization Problems

We study a cutting-plane method for semidefinite optimization problems (SDOs), and supply a proof of the method’s convergence, under a boundedness assumption. By relating the method’s rate of convergence to an initial outer approximation’s diameter, we argue that the method performs well when initialized with a second-order-cone approximation, instead of a linear approximation. We invoke … Read more

Operations Planning Experiments for Power Systems with High Renewable Resources

Driven by ambitious renewable portfolio standards, variable energy resources (such as wind and solar) are expected to impose unprecedented levels of uncertainty to power system operations. The current practice of planning operations with deterministic optimization tools may be ill-suited for a future where uncertainty is abundant. To overcome the reliability challenges associated with the large-scale … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more