Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control … Read more

An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. … Read more

Local Convergence of an Algorithm for Subspace Identification from Partial Data

GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative algorithm for identifying a linear subspace of $\R^n$ from data consisting of partial observations of random vectors from that subspace. This paper examines local convergence properties of GROUSE, under assumptions on the randomness of the observed vectors, the randomness of the subset of elements observed at … Read more

Levenberg-Marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation

The Levenberg-Marquardt algorithm is one of the most popular algorithms for the solution of nonlinear least squares problems. Motivated by the problem structure in data assimilation, we consider in this paper the extension of the classical Levenberg-Marquardt algorithm to the scenarios where the linearized least squares subproblems are solved inexactly and/or the gradient model is … Read more

Steplength Thresholds for Invariance Preserving of Discretization Methods of Dynamical Systems on a Polyhedron

Steplength thresholds for invariance preserving of three types of discretization methods on a polyhedron are considered. For Taylor approximation type discretization methods we prove that a valid steplength threshold can be obtained by finding the first positive zeros of a finite number of polynomial functions. Further, a simple and efficient algorithm is proposed to numerically … Read more

Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however … Read more

The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences

This paper presents a novel application of operations research techniques to the analysis of HIV env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying … Read more

A Novel Unified Approach to Invariance in Control

In this paper, we propose a novel, unified, general approach to investigate sufficient and necessary conditions under which four types of convex sets, polyhedra, polyhedral cones, ellipsoids and Lorenz cones, are invariant sets for a linear continuous or discrete dynamical system. In proving invariance of ellipsoids and Lorenz cones for discrete systems, instead of the … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

AN INEQUALITY-CONSTRAINED SQP METHOD FOR EIGENVALUE OPTIMIZATION

We consider a problem in eigenvalue optimization, in particular find- ing a local minimizer of the spectral abscissa – the value of a parameter that results in the smallest magnitude of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control sys- tems. Many … Read more