Distributionally robust control of constrained stochastic systems

We investigate the control of constrained stochastic linear systems when faced with only limited information regarding the disturbance process, i.e. when only the first two moments of the disturbance distribution are known. We consider two types of distributionally robust constraints. The constraints of the first type are required to hold with a given probability for … Read more

A SIMPLE TROLLEY-LIKE MODEL IN THE PRESENCE OF A NONLINEAR FRICTION AND A BOUNDED FUEL EXPENDITURE

We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

Alternating active-phase algorithm for multimaterial topology optimization problems — a 115-line MATLAB implementation

A new algorithm for the solution of multimaterial topology optimization problems is introduced in the present study. The presented method is based on the splitting of a multiphase topology optimization problem into a series of binary phase topology optimization sub-problems which are solved partially, in a sequential manner, using a traditional binary phase topology optimization … Read more

Locally Ideal Formulations for Piecewise Linear Functions with Indicator Variables

In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear functions (PLFs) that are evaluated when an indicator variable is turned on. We describe modifications to standard MIP formulations for PLFs with desirable theoretical properties and superior computational performance in this context. Citation Technical Report #1788, Computer Sciences Department, University of … Read more

Maxwell-Boltzmann and Bose-Einstein Distributions for the SAT Problem

Recent studies in theoretical computer science have exploited new algorithms and methodologies based on statistical physics for investigating the structure and the properties of the Satisfiability problem. We propose a characterization of the SAT problem as a physical system, using both quantum and classical statistical-physical models. We associate a graph to a SAT instance and … Read more

Trace-Penalty Minimization for Large-scale Eigenspace Computation

The Rayleigh-Ritz (RR) procedure, including orthogonalization, constitutes a major bottleneck in computing relatively high dimensional eigenspaces of large sparse matrices. Although operations involved in RR steps can be parallelized to a certain level, their parallel scalability, which is limited by some inherent sequential steps, is lower than dense matrix-matrix multiplications. The primary motivation of this … Read more

Optimal Power Grid Protection through A Defender-Attacker-Defender Model

Power grid vulnerability is a major concern of modern society, and its protection problem is often formulated as a tri-level defender-attacker-defender model. However, this tri-level problem is compu- tationally challenging. In this paper, we design and implement a Column-and-Constraint Generation algorithm to derive its optimal solutions. Numerical results on an IEEE system show that: (i) … Read more

Principle of optimal accuracy classification for metrological purposes

The conceptions of optimizing a quantitative classification hierarchy and the criterion of informational optimality have been used for modeling universal accuracy classification scale. Proposed model is based on test uncertainty ratios determined in conformity with optimal levels of confidence in evaluating measurement uncertainty, as well as on the optimal classification structure. The author believes that … Read more

Robust Near-Separable Nonnegative Matrix Factorization Using Linear Optimization

Nonnegative matrix factorization (NMF) has been shown recently to be tractable under the separability assumption, under which all the columns of the input data matrix belong to the convex cone generated by only a few of these columns. Bittorf, Recht, R\’e and Tropp (`Factoring nonnegative matrices with linear programs’, NIPS 2012) proposed a linear programming … Read more