Informatively optimal levels of confidence for mesurement uncertainty

The conception of dimensional perfection and based on principles of qualimetry and information theory the criterion of informational optimality have been used for analyzing modeling functions of measurement. By means of variances of uncertainty contributions, transformed into their relative weights, the possibility of determining informatively rational and optimal levels of confidence for expanded uncertainty has … Read more

Daily Scheduling of Nurses in Operating Suites

This paper provides a new multi-objective integer programming model for the daily scheduling of nurses in operating suites. The model is designed to assign nurses to di erent surgery cases based on their specialties and competency levels, subject to a series of hard and soft constraints related to nurse satisfaction, idle time, overtime, and job changes … Read more

Improving Robust Rolling Stock Circulation in Rapid Transit Networks

The routing of the rolling stock depends strongly on the rolling stock assignment to di erent opera- tions and the shunting schedule. Therefore, the integration of these decision making is justi ed and is appropriate to introduce robustness in the model. We propose a new approach to obtain better circula- tions of the rolling stock material, solving … Read more

Stochastic approaches for solving Rapid Transit Network Design models with random demand

We address rapid transit network design problems characterized by uncertainty in the input data. Network design has a determinant impact on the future e ective- ness of the system. Design decisions are made with a great degree of uncertainty about the conditions under which the system will be required to operate. The de- mand is one … Read more

Compressive Sensing Based High Resolution Channel Estimation for OFDM System

Orthogonal frequency division multiplexing (OFDM) is a technique that will prevail in the next generation wireless communication. Channel estimation is one of the key challenges in OFDM, since high-resolution channel estimation can significantly improve the equalization at the receiver and consequently enhance the communication performances. In this paper, we propose a system with an asymmetric … Read more

Multi-target Linear-quadratic control problem: semi-infinite interval

We consider multi-target linear-quadratic control problem on semi-infinite interval. We show that the problem can be reduced to a simple convex optimization problem on the simplex. CitationTo appear in Mathematical Problems in Engineering 2012 ArticleDownload View PDF

Optimal synthesis in the Reeds and Shepp problem with a free final direction

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all types of extremals and, analysing them and discarding nonoptimal ones, construct the optimal synthesis. ArticleDownload View PDF

A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search

This paper presents a new two-phase solution approach to the beam angle and fluence map optimization problem in Intensity Modulated Radiation Therapy (IMRT) planning. We introduce Branch-and-Prune (B&P) to generate a robust feasible solution in the first phase. A local neighborhood search algorithm is developed to find a local optimal solution from the Phase I … Read more

Adjoint Sensitivity Analysis for Numerical Weather Prediction: Applications to Power Grid Optimization

We present an approach to estimate adjoint sensitivities of economic metrics of relevance in the power grid with respect to physical weather variables using numerical weather prediction models. We demonstrate that this capability can significantly enhance planning and operations. We illustrate the method using a large-scale computational study where we compute sensitivities of the regional … Read more

Proximal point method on Finslerian manifolds and the “Effort Accuracy Trade off”

In this paper we consider minimization problems with constraints. We will show that if the set of constraints is a Finslerian manifold of non positive flag curvature, and the objective function is di fferentiable and satisfi es the property Kurdyka-Lojasiewicz, then the proximal point method is naturally extended to solve that class of problems. We will prove … Read more