An exact algorithm for solving the ring star problem

This paper deals with the ring star problem that consists in designing a ring that pass through a central depot, and then assigning each non visited customer to a node of the ring. The objective is to minimize the total routing and assignment costs. A new chain based formulation is proposed. Valid inequalities are proposed … Read more

An improved Benders decomposition applied to a multi-layer network design problem

Benders decomposition has been widely used for solving network design problems. In this paper, we use a branch-and-cut algorithm to improve the separation procedure of Gabrel et al. and Knippel et al. for capacitated network design. We detail experiments on bilayer networks, comparing with Knippel’s previous results. CitationTechnical Reports of the ULB Computer Science Department, … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

A Branch-and-Cut Algorithm based on Semidefinite Programming for the Minimum k-Partition Problem

The minimum k-partition (MkP) problem is the problem of partitioning the set of vertices of a graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same partition. The main contribution of this paper is the design and implementation of a branch-and-cut algorithm based on semidefinite … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more

Integer Programming Solution Approach for Inventory-Production-Distribution Problems with Direct Shipments

We construct an integrated multi-period inventory-production-distribution replenishment plan for three-stage supply chains. The supply chain maintains close-relationships with a small group of suppliers, and the nature of the products (bulk, chemical, etc.) makes it more economical to rely upon a direct shipment, full-truck load distribution policy between supply chain nodes. In this paper, we formulate … Read more

Orbitopal Fixing

The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up … Read more

On the complexity of cutting plane proofs using split cuts

We prove that cutting-plane proofs which use split cuts have exponential length in the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR) cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the exponential worst-case … Read more

Efficient Evaluation of Polynomials and Their Partial Derivatives in Homotopy Continuation Methods

The aim of this paper is to study how efficiently we evaluate a system of multivariate polynomials and their partial derivatives in homotopy continuation methods. Our major tool is an extension of the Hornor scheme, which is popular in evaluating a univariate polynomial, to a multivariate polynomial. But the extension is not unique, and there … Read more

A polyhedral approach to reroute sequence planning in MPLS networks

This paper is devoted to the study of the reroute sequence planning problem in multi-protocol label switching networks from the polyhedral viewpoint. The reroute sequence plan polytope, defined as the convex hull of the incidence vectors of the reroute sequences which do not violate the network link capacities, is introduced and some of its properties … Read more