Lower Bounds on the Size of General Branch-and-Bound Trees

A \emph{general branch-and-bound tree} is a branch-and-bound tree which is allowed to use general disjunctions of the form $\pi^{\top} x \leq \pi_0 \,\vee\, \pi^{\top}x \geq \pi_0 + 1$, where $\pi$ is an integer vector and $\pi_0$ is an integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and a … Read more

Strong valid inequalities for a class of concave submodular minimization problems under cardinality constraints

We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a^\top x)$, where $f$ is a univariate concave function, $a$ is a non-negative vector, and $x$ is a binary vector of … Read more

A tailored Benders decomposition approach for last-mile delivery with autonomous robots

This work addresses an operational problem of a logistics service provider that consists of finding an optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to minimize a tardiness indicator based on the customer … Read more

An exact price-cut-and-enumerate method for the capacitated multi-trip vehicle routing problem with time windows

We consider the capacitated multi-trip vehicle routing problem with time windows (CMTVRPTW), where vehicles are allowed to make multiple trips. The ability to perform multiple trips is necessary for some real-world applications where the vehicle capacity, the trip duration, or the number of drivers or vehicles is limited. However, it substantially increases the solution difficulty … Read more

Fairness over Time in Dynamic Resource Allocation with an Application in Healthcare

Decision making problems are typically concerned with maximizing efficiency. In contrast, we address problems where there are multiple stakeholders and a centralized decision maker who is obliged to decide in a fair manner. Different decisions give different utility to each stakeholder. In cases where these decisions are made repeatedly, we provide efficient mathematical programming formulations … Read more

Optimal Steiner Trees Under Node and Edge Privacy Conflicts

In this work, we suggest concepts and solution methodologies for a series of strategic network design problems that find application in highly data-sensitive industries, such as, for instance, the high-tech, governmental, or military sector. Our focus is on the installation of widely used cost-efficient tree-structured communication infrastructure. As base model we use the well-known Steiner … Read more

Improved Branch-and-Cut for the Inventory Routing Problem Based on a Two-Commodity Flow Formulation

This paper examines the Inventory Routing Problem (IRP) with Maximum Level inventory policy. The IRP is a broad class of hard to solve problems with numerous practical applications in the field of freight transportation and logistics. A supplier is responsible for determining the timing and the quantity of replenishment services offered to a set of … Read more

Branch-and-Bound Solves Random Binary IPs in Polytime

Branch-and-bound is the workhorse of all state-of-the-art mixed integer linear programming (MILP) solvers. These implementations of branch-and-bound typically use variable branching, that is, the child nodes are obtained by fixing some variable to an integer value v in one node and to v + 1 in the other node. Even though modern MILP solvers are … Read more

A Separation Heuristic for 2-Partition Inequalities for the Clique Partitioning Problem

We consider the class of 2-partition inequalities for the clique partitioning problem associated with complete graphs. We propose a heuristic separation algorithm for the inequalities and evaluate its usefulness in a cutting-plane algorithm. Our computational experiments fall into two parts. In the first part, we compare the LP objective values obtained by the proposed separator … Read more

A Branch-and-Check Approach for the Tourist Trip Design Problem with Rich Constraints

The tourist trip design problem is an extension of the orienteering problem applied to tourism. The problem consists in selecting a subset of locations to visit from among a larger set while maximizing the benefit for the tourist. The benefit is given by the sum of the rewards collected at each location visited. We consider … Read more