Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Minimum Color-Degree Perfect b -Matchings

The minimum color-degree perfect b-matching roblem (Col-BM) is a new extension of the perfect b-matching problem to edge-colored graphs. The objective of Col-BM is to minimize the maximum number of differently colored edges in a perfect b-matching that are incident to the same node. We show that Col-BM is NP-hard on bipartite graphs by a … Read more

Generating irreducible copositive matrices using the stable set problem

In this paper it is considered how graphs can be used to generate copositive matrices, and necessary and sufficient conditions are given for these generated matrices to then be irreducible with respect to the set of positive semidefinite plus nonnegative matrices. This is done through combining the well known copositive formulation of the stable set … Read more

A Critical Survey on the Network Optimization Algorithms for Evacuation Planning Problems

In the last decades, research on emergency traffic management has received high attention from the operations research community and many pioneer researchers have established it as one of the most fertile research areas. We consider the computationally hard flows over time problems from wider perspective including flow/time dependent attributes (dynamic flows), a possibility of flows … Read more

On a reduction of the weighted induced bipartite subgraph problem to the weighted independent set problem

We study the weighted induced bipartite subgraph problem (WIBSP). The goal of WIBSP is, given a graph and nonnegative weights for the nodes, to find a set W of nodes with the maximum total weight such that a subgraph induced by W is bipartite. WIBSP is also referred as to the graph bipartization problem or … Read more

Convex optimization under combinatorial sparsity constraints

We present a heuristic approach for convex optimization problems containing sparsity constraints. The latter can be cardinality constraints, but our approach also covers more complex constraints on the support of the solution. For the special case that the support is required to belong to a matroid, we propose an exchange heuristic adapting the support in … Read more

Computing the Spark: Mixed-Integer Programming for the (Vector) Matroid Girth Problem

We investigate the NP-hard problem of computing the spark of a matrix (i.e., the smallest number of linearly dependent columns), a key parameter in compressed sensing and sparse signal recovery. To that end, we identify polynomially solvable special cases, gather upper and lower bounding procedures, and propose several exact (mixed-)integer programming models and linear programming … Read more

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph

The clique problem with multiple-choice constraints (CPMC) represents a very common substructure in many real-world applications, for example scheduling problems with precedence constraints. It consists in finding a clique in a graph whose nodes are partitioned into subsets, such that exactly one node from each subset is chosen. Even though we can show that (CPMC) … Read more

The Maximum Clique Interdiction Problem

Given a graph G and an interdiction budget k, the Maximum Clique Interdiction Problem asks to find a subset of at most k vertices to remove from G so that the size of the maximum clique in the remaining graph is minimized. This problem has applications in many areas, such as crime detection, prevention of … Read more