On Blocking and Anti-Blocking Polyhedra in Infinite Dimensions

We consider the natural generalizations of blocking and anti-blocking polyhedra in infinite dimensions, and study issues related to duality and integrality of extreme points for these sets. Using appropriate finite truncations, we give conditions under which complementary slackness holds for primal-dual pairs of the infi nite linear programming problems associated with infi nite blocking and anti-blocking polyhedra. … Read more

Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

We study a new geometric graph parameter $\egd(G)$, defined as the smallest integer $r\ge 1$ for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of $G$, can be completed to a matrix in the convex hull of correlation matrices of … Read more

The Gram dimension of a graph

The Gram dimension $\gd(G)$ of a graph is the smallest integer $k \ge 1$ such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in $\oR^k$, having the same inner products on the edges of the graph. The class of graphs satisfying $\gd(G) … Read more

Improved lower bounds for the 2-page crossing numbers of K(m,n) and K(n) via semidefinite programming

The crossing number of a graph is the minimal number of edge crossings achievable in a drawing of the graph in the plane. The crossing numbers of complete and complete bipartite graphs are long standing open questions. In a 2-page drawing of a graph, all vertices are drawn on a circle, and no edge may … Read more

A Proof by the Simplex Method for the Diameter of a (0,1)-Polytope

Naddef shows that the Hirsch conjecture is true for (0,1)-polytopes by proving that the diameter of any $(0,1)$-polytope in $d$-dimensional Euclidean space is at most $d$. In this short paper, we give a simple proof for the diameter. The proof is based on the number of solutions generated by the simplex method for a linear … Read more

Convex Graph Invariants

The structural properties of graphs are usually characterized in terms of invariants, which are functions of graphs that do not depend on the labeling of the nodes. In this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples include functions of … Read more

A Branch-and-Price Approach to the k-Clustering Minimum Biclique Completion Problem

Given a bipartite graph G = (S , T , E ), we consider the problem of finding k bipartite subgraphs, called clusters, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and … Read more

Coverings and Matchings in r-Partite Hypergraphs

Ryser’s conjecture postulates that, for $r$-partite hypergraphs, $\tau \leq (r-1) \nu$ where $\tau$ is the covering number of the hypergraph and $\nu$ is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where $r \leq 5$. In this paper, we … Read more

Approximating the Least Core Value and Least Core of Cooperative Games with Supermodular Costs

We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a (3 + \epsilon)-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time … Read more

Isomorphism testing for circulant graphs Cn(a,b)

In this paper we focus on connected directed/undirected circulant graphs Cn(a,b). We investigate some topological characteristics, and define a simple combinatorial model, which is new for the topic. Building on such a model, we derive a necessary and sufficient condition to test whether two circulant graphs Cn(a, b) and Cn(a’,b’) are isomorphic or not. The … Read more