Variants in Modeling Time Aspects for the Multiple Traveling Salesmen Problem with Moving Targets

The multiple traveling salesmen problem with moving targets (MT-SPMT) is a generalization of the classical traveling salesmen problem (TSP), where the targets (cities or objects) are moving over time. Additionally, for each target a visibility time window is given. The task is to find routes for several salesmen so that each target is reached exactly … Read more

An Integer Programming approach for the Time-Dependent Traveling Salesman Problem with Time Windows

Congestion in large cities and populated areas is one of the major challenges in urban logistics, and should be addressed at different planning and operational levels. The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the travel times are not assumed to be constant along the … Read more

A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-weighted Steiner tree problem (NWSTP). The main component of … Read more

An exact hybrid method for the vehicle routing problem with time windows and multiple deliverymen

The vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) is a variant of the vehicle routing problem with time windows in which service times at customers depend on the number of deliverymen assigned to the route that serves them. Hence, in addition to the usual routing and scheduling decisions, the crew size for … Read more

Tight cycle relaxations for the cut polytope

We study the problem of optimizing an arbitrary weight function w’z over the metric polytope of a graph G=(V,E), a well-known relaxation of the cut polytope. We define the signed graph (G, E^-), where E^- consists of the edges of G having negative weight. We characterize the sign patterns of the weight vector w such … Read more

Complexity of Routing Problems with Release Dates and Deadlines

The desire of companies to offer same-day delivery leads to interesting new routing problems. We study the complexity of a setting in which a delivery to a customer is guaranteed to take place within a pre-specified time after the customer places the order. Thus, an order has a release date (when the order is placed) … Read more

On Decomposability of Multilinear Sets

In this paper, we consider the Multilinear set defined as the set of binary points satisfying a collection of multilinear equations. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is … Read more

Branch-and-Cut approaches for p-Cluster Editing

This paper deals with a variant of the well-known Cluster Editing Problem (CEP), more precisely, the \textit{p}-CEP, in which a given input graph should be edited by adding and/or removing edges in such a way that \textit{p} vertex-disjoint cliques (clusters) are generated with the minimum number of editions. We introduce several valid inequalities where some … Read more

Piecewise Parametric Structure in the Pooling Problem – from Sparse Strongly-Polynomial Solutions to NP-Hardness

The standard pooling problem is a NP-hard sub-class of non-convex quadratically-constrained optimization problems that commonly arises in process systems engineering applications. We take a parametric approach to uncovering topological structure and sparsity of the standard pooling problem in its p-formulation. The structure uncovered in this approach validates Professor Christodoulos A. Floudas’ intuition that pooling problems … Read more

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods

We introduce the Traveling Salesman Problem with forbidden neighborhoods (TSPFN). This is an extension of the Euclidean TSP in the plane where direct connections between points that are too close are forbidden. The TSPFN is motivated by an application in laser beam melting. In the production of a workpiece in several layers using this method … Read more