Scheduling on a single machine under time-of-use electricity tariffs

We consider the problem of scheduling jobs on a single machine to minimize the total electricity cost of processing these jobs under time-of-use electricity tariffs. We consider both uniform-speed and speed-scalable machine environments. For the uniform-speed case, we prove that this problem is strongly NP-hard, and in fact inapproximable within a constant factor, unless P … Read more

Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set, which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact algorithms are proposed: an enumerative algorithm and its … Read more

A Note on Linear On/Off Constraints

This note studies compact representations of linear on/off constraints in mixed-integer linear optimization. A characterization of the convex hull of linear disjunctions is given in the space of original variables. This result can improve formulations of mixed-integer linear programs featuring on/off constraints by reducing the integrality gap in a Branch and Bound approach. Citation @article{, … Read more

A Characterization of Irreducible Infeasible Subsystems in Flow Networks

Infeasible network flow problems with supplies and demands can be characterized via violated cut-inequalities of the classical Gale-Hoffman theorem. Written as a linear program, irreducible infeasible subsystems (IISs) provide a different means of infeasibility characterization. In this article, we answer a question left open in the literature, by showing a one-to-one correspondence between IISs and … Read more

Decomposition Algorithms for Two-Stage Chance-Constrained Programs

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve … Read more

Generating subtour constraints for the TSP from pure integer solutions

The traveling salesman problem (TSP) is one of the most prominent combinatorial optimization problems. Given a complete graph G = (V, E) and nonnegative real edge distances d, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

A Trust Region Method for the Solution of the Surrogate Dual in Integer Programming

We propose an algorithm for solving the surrogate dual of a mixed integer program. The algorithm uses a trust region method based on a piecewise affine model of the dual surrogate value function. A new and much more flexible way of updating bounds on the surrogate dual’s value is proposed, which numerical experiments prove to … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more

Reclaimer Scheduling: Complexity and Algorithms

We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor … Read more