A NOTE ON THE EXTENSION COMPLEXITY OF THE KNAPSACK POLYTOPE

We show that there are 0-1 and unbounded knapsack polytopes with super-polynomial extension complexity. More specifically, for each n in N we exhibit 0-1 and unbounded knapsack polyhedra in dimension n with extension complexity \Omega(2^\sqrt{n}). ArticleDownload View PDF

Analytical formulas for calculating the extremal ranks and inertias of + BXB^{*}$ when $ is a fixed-rank Hermitian matrix

The rank of a matrix and the inertia of a square matrix are two of the most generic concepts in matrix theory for describing the dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix. Matrix rank and inertia optimization problems are a class of discontinuous optimization problems, in … Read more

Robust combinatorial optimization with cost uncertainty

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates … Read more

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem

We consider two linear relaxations of the asymmetric traveling salesman problem (TSP), the Held-Karp relaxation of the TSP’s arc-based formulation, and a particular approximate linear programming (ALP) relaxation obtained by restricting the dual of the TSP’s shortest path formulation. We show that the two formulations produce equal lower bounds for the TSP’s optimal cost regardless … Read more

Robust Optimization under Multi-band Uncertainty – Part I: Theory

The classical single-band uncertainty model introduced by Bertsimas and Sim has represented a breakthrough in the development of tractable robust counterparts of Linear Programs. However, adopting a single deviation band may be too limitative in practice: in many real-world problems, observed deviations indeed present asymmetric distributions over asymmetric ranges, so that getting a higher modeling … Read more

Multidirectional Physarum Solver: an Innovative Bio-inspired Algorithm for Optimal Discrete Decision Making

This paper introduces a new bio-inspired algorithm for optimal discrete decision making, able to incrementally grow and explore decision graphs in multiple directions. The heuristic draws inspiration from the idea that building decision sequences from multiple directions and then combining the sequences is an optimal choice if compared with a unidirectional approach. The behaviour of … Read more

Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more

The Quest for Optimal Solutions for the Art Gallery Problem: a Practical Iterative Algorithm

The general Art Gallery Problem (AGP) consists in finding the minimum number of guards sufficient to ensure the visibility coverage of an art gallery represented by a polygon. The AGP is a well known NP-hard problem and, for this reason, all algorithms proposed so far to solve it are unable to guarantee optimality except in … Read more

Incremental Network Design with Shortest Paths

We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, we show that the simplest variant is NP-hard, we analyze the worst-case performance of natural greedy heuristics, … Read more