Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more

Small bipartite subgraph polytopes

We compute a complete linear description of the bipartite subgraph polytope, for up to seven nodes, and a conjectured complete description for eight nodes. We then show how these descriptions were used to compute the integrality ratio of various relaxations of the max-cut problem, again for up to eight nodes. CitationL. Galli & A.N. Letchford … Read more

An exact approach to the problem of extracting an embedded network matrix

We study the problem of detecting a maximum embedded network submatrix in a {-1,0,+1}-matrix. Our aim is to solve the problem to optimality. We introduce a 0-1 integer linear formulation for this problem based on its representation over a signed graph. A polyhedral study is presented and a branch-and-cut algorithm is described for finding an … Read more

On generalized network design polyhedra

In recent years, there has been an increased literature on so-called Generalized Network Design Problems, such as the Generalized Minimum Spanning Tree Problem and the Generalized Traveling Salesman Problem. In such problems, the node set of a graph is partitioned into clusters, and the feasible solutions must contain one node from each cluster. Up to … Read more

Binary positive semidefinite matrices and associated integer polytopes

We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature — the cut, boolean quadric, multicut and clique partitioning polytopes — are faces of binary … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Trioid: A generalization of matroid and the associated polytope

We consider a generalization of the well known greedy algorithm, called $m$-step greedy algorithm, where $m$ elements are examined in each iteration. When $m=1$ or $2$, the algorithm reduces to the standard greedy algorithm. For $m=3$ we provide a complete characterization of the independence system, called trioid, where the $m$-step greedy algorithm guarantees an optimal … Read more

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in … Read more

The N – k Problem in Power Grids: New Models, Formulations and Computation

Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N – k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. We present theoretical results and computation … Read more

Extended Formulations for Packing and Partitioning Orbitopes

We give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in Kaibel and Pfetsch (Math. Program. 114 (1), 2008, 1-36). These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, resp. exactly, one 1-entry per row. They are … Read more