On generalized network design polyhedra

In recent years, there has been an increased literature on so-called Generalized Network Design Problems, such as the Generalized Minimum Spanning Tree Problem and the Generalized Traveling Salesman Problem. In such problems, the node set of a graph is partitioned into clusters, and the feasible solutions must contain one node from each cluster. Up to … Read more

Binary positive semidefinite matrices and associated integer polytopes

We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature — the cut, boolean quadric, multicut and clique partitioning polytopes — are faces of binary … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Trioid: A generalization of matroid and the associated polytope

We consider a generalization of the well known greedy algorithm, called $m$-step greedy algorithm, where $m$ elements are examined in each iteration. When $m=1$ or $2$, the algorithm reduces to the standard greedy algorithm. For $m=3$ we provide a complete characterization of the independence system, called trioid, where the $m$-step greedy algorithm guarantees an optimal … Read more

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in … Read more

The N – k Problem in Power Grids: New Models, Formulations and Computation

Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N – k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. We present theoretical results and computation … Read more

Extended Formulations for Packing and Partitioning Orbitopes

We give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in Kaibel and Pfetsch (Math. Program. 114 (1), 2008, 1-36). These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, resp. exactly, one 1-entry per row. They are … Read more

Size constrained graph partitioning polytope. Part I: Dimension and trivial facets

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the … Read more

Size constrained graph partitioning polytope. Part II: Non-trivial facets

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the … Read more

Parallel Approximation, and Integer Programming Reformulation

We analyze two integer programming reformulations of the n-dimensional knapsack feasibility problem without assuming any structure on the weight vector $a.$ Both reformulations have a constraint matrix in which the columns form a reduced basis in the sense of Lenstra, Lenstra, and Lov\’asz. The nullspace reformulation of Aardal, Hurkens and Lenstra has n-1 variables, and … Read more