Uniform nonsingularity and complementarity problems over symmetric cones

We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method proposed by Xin … Read more

Real-Time Optimization as a Generalized Equation

We establish results for the problem of tracking a time-dependent manifold arising in online nonlinear programming by casting this as a generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a linear complementarity problem (LCP) at each time step. … Read more

Stability for solution of Differential Variational Inequalitiy

In this paper we study the class of differential variational inequality(DVI) in a finite-dimension Euclidean space. We study stability and perturbation of the DVI under the OSL condition. Besides, we establish a Prior Bound Theorem, which is a useful tool to prove stability of DVI. In this paper, we replace the classical Lipshitz continuity by … Read more

An inexact parallel splitting augmented Lagrangian method for large system of linear equations

Parallel iterative methods are power tool for solving large system of linear equations (LQs). The existing parallel computing research results are all most concentred to sparse system or others particular structure, and all most based on parallel implementing the classical relaxation methods such as Gauss-Seidel, SOR, and AOR methods e±ciently on multiprcessor systems. In this … Read more

An novel ADM for finding Cournot equilibria of bargaining problem with alternating offers

Bargaining is a basic game in economic practice. Cournot duopoly game is an important model in bargaining theory. Recently, asymmetry information [20] and incomplete information [19], limited individual rationality [2] and slightly altruistic equilibrium [10] are introduced into bargaining theory. And computational game theory come into being a new research field. In this paper, we … Read more

Homogeneous Cone Complementarity Problems and $ Properties

We consider existence and uniqueness properties of a solution to homogeneous cone complementarity problem (HCCP). Employing the $T$-algebraic characterization of homogeneous cones, we generalize the $P, P_0, R_0$ properties for a nonlinear function associated with the standard nonlinear complementarity problem to the setting of HCCP. We prove that if a continuous function has either the … Read more

A continuation method for nonlinear complementarity problems over symmetric cone

In this paper, we introduce a new P-type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P-type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically. Citation Research Report, Division of Mathematical Sciences, School … Read more

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of new termination criteria based on the $\varepsilon$-enlargement of a maximal monotone operator. The advantage … Read more

A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints

We present a new relaxation scheme for mathematical programs with equilibrium constraints (MPEC), where the complementarity constraints are replaced by a reformulation that is exact for the complementarity conditions corresponding to sufficiently non-degenerate complementarity components and relaxes only the remaining complementarity conditions. A positive parameter determines to what extent the complementarity conditions are relaxed. The … Read more

Proximal-like contraction methods for monotone variational inequalities in a unified framework

Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, the projection method takes the iteration in form of $u^{k+1} = P_{\Omega}[u^k-\alpha_k d^k]$. Interestingly, many of them can be paired such that $%\exists \tilde{u}^k, \tilde{u}^k = P_{\Omega}[u^k – \beta_kF(v^k)] = … Read more