Examples of ill-behaved central paths in convex optimization

This paper presents some examples of ill-behaved central paths in convex optimization. Some contain infinitely many fixed length central segments; others manifest oscillations with infinite variation. These central paths can be encountered even for infinitely differentiable data. CitationRapport de recherche 4179, INRIA, France, 2001ArticleDownload View PDF

An Attractor-Repeller Approach to Floorplanning

The floorplanning (or facility layout) problem consists in finding the optimal positions for a given set of modules of fixed area (but perhaps varying dimensions) within a facility such that the distances between pairs of modules that have a positive connection cost are minimized. This is a hard discrete optimization problem; even the restricted version … Read more

Self-scaled barriers for irreducible symmetric cones

Self-scaled barrier functions are fundamental objects in the theory of interior-point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self-scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition … Read more

Lagrangian dual interior-point methods for semidefinite programs

This paper proposes a new predictor-corrector interior-point method for a class of semidefinite programs, which numerically traces the central trajectory in a space of Lagrange multipliers. The distinguished features of the method are full use of the BFGS quasi-Newton method in the corrector procedure and an application of the conjugate gradient method with an effective … Read more

Self-scaled barrier functions on symmetric cones and their classification

Self-scaled barrier functions on self-scaled cones were introduced through a set of axioms in 1994 by Y.E. Nesterov and M.J. Todd as a tool for the construction of long-step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains … Read more

Lagrangian relaxation

Lagrangian relaxation is a tool to find upper bounds on a given (arbitrary) maximization problem. Sometimes, the bound is exact and an optimal solution is found. Our aim in this paper is to review this technique, the theory behind it, its numerical aspects, its relation with other techniques such as column generation. Citationin: Computational Combinatorial … Read more

A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

Improving complexity of structured convex optimization problems using self-concordant barriers

The purpose of this paper is to provide improved complexity results for several classes of structured convex optimization problems using to the theory of self-concordant functions developed in [2]. We describe the classical short-step interior-point method and optimize its parameters in order to provide the best possible iteration bound. We also discuss the necessity of … Read more

Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied … Read more

Proving strong duality for geometric optimization using a conic formulation

Geometric optimization is an important class of problems that has many applications, especially in engineering design. In this article, we provide new simplified proofs for the well-known associated duality theory, using conic optimization. After introducing suitable convex cones and studying their properties, we model geometric optimization problems with a conic formulation, which allows us to … Read more