On the Convergence Results of a class of Nonmonotone Accelerated Proximal Gradient Methods for Nonsmooth and Nonconvex Minimization Problems

In this paper, we consider a class of nonsmooth problem that is the sum of a Lipschitz differentiable function and a nonsmooth and proper lower semicontinuous function. We discuss here the convergence rate of the function values for a nonmonotone accelerated proximal gradient method, which proposed in “Huan Li and Zhouchen Lin: Accelerated proximal gradient … Read more

Local Minimizers of the Crouzeix Ratio: A Nonsmooth Optimization Case Study

Given a square matrix $A$ and a polynomial $p$, the Crouzeix ratio is the norm of the polynomial on the field of values of $A$ divided by the 2-norm of the matrix $p(A)$. Crouzeix’s conjecture states that the globally minimal value of the Crouzeix ratio is 0.5, regardless of the matrix order and polynomial degree, … Read more

Radial Duality Part II: Applications and Algorithms

The first part of this work established the foundations of a radial duality between nonnegative optimization problems, inspired by the work of (Renegar, 2016). Here we utilize our radial duality theory to design and analyze projection-free optimization algorithms that operate by solving a radially dual problem. In particular, we consider radial subgradient, smoothing, and accelerated … Read more

A Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

We propose a new nonmonontone accelerated proximal gradient method with variable stepsize strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from the overall point of view. The variable stepsize strategy don’t … Read more

Factorization of completely positive matrices using iterative projected gradient steps

We aim to factorize a completely positive matrix by using an optimization approach which consists in the minimization of a nonconvex smooth function over a convex and compact set. To solve this problem we propose a projected gradient algorithm with parameters that take into account the effects of relaxation and inertia. Both projection and gradient … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

A Proximal Quasi-Newton Trust-Region Method for Nonsmooth Regularized Optimization

We develop a trust-region method for minimizing the sum of a smooth term f and a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes apossibly nonconvex model of f+h in a trust region. The model coincides with f+h in value and subdifferential at the center. We establish global … Read more

An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems

In this paper, we propose a new method for a class of difference-of-convex (DC) optimization problems, whose objective is the sum of a smooth function and a possibly non-prox-friendly DC function. The method sequentially solves subproblems constructed from a quadratic approximation of the smooth function and a linear majorization of the concave part of the … Read more

Implicit Regularization of Sub-Gradient Method in Robust Matrix Recovery: Don’t be Afraid of Outliers

It is well-known that simple short-sighted algorithms, such as gradient descent, generalize well in the over-parameterized learning tasks, due to their implicit regularization. However, it is unknown whether the implicit regularization of these algorithms can be extended to robust learning tasks, where a subset of samples may be grossly corrupted with noise. In this work, … Read more

On Solving Elliptic Obstacle Problems by Compact Abs-Linearization

We consider optimal control problems governed by an elliptic variational inequality of the first kind, namely the obstacle problem. The variational inequality is treated by penalization which leads to optimization problems governed by a nonsmooth semi- linear elliptic PDE. The CALi algorithm is then applied for the efficient solution of these nonsmooth optimization problems. The … Read more