Generic nondegeneracy in convex optimization

We show that minimizers of convex functions subject to almost all linear perturbations are nondegenerate. An analogous result holds more generally, for lower-C^2 functions. Citation Cornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. May 2010. Article Download View Generic nondegeneracy in convex optimization

Semi-algebraic functions have small subdifferentials

We prove that the subdifferential of any semi-algebraic extended-real-valued function on $\R^n$ has $n$-dimensional graph. We discuss consequences for generic semi-algebraic optimization problems. Citation Cornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. April 2010. Article Download View Semi-algebraic functions have small subdifferentials

Necessary optimality conditions for multiobjective bilevel programs

The multiobjective bilevel program is a sequence of two optimization problems where the upper level problem is multiobjective and the constraint region of the upper level problem is determined implicitly by the solution set to the lower level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of … Read more

Sparse optimization with least-squares constraints

The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a … Read more

A Fast Algorithm for Total Variation Image Reconstruction from Random Projections

Total variation (TV) regularization is popular in image restoration and reconstruction due to its ability to preserve image edges. To date, most research activities on TV models concentrate on image restoration from blurry and noisy observations, while discussions on image reconstruction from random projections are relatively fewer. In this paper, we propose, analyze, and test … Read more

A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization

We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable on … Read more

Alternating Direction Algorithms for $\ell_1hBcProblems in Compressive Sensing

In this paper, we propose and study the use of alternating direction algorithms for several $\ell_1$-norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basis-pursuit denoising problems of both unconstrained and constrained forms, as well as others. We present and investigate two classes of algorithms derived from … Read more

A Proximal Algorithm with Quasi Distance. Application to Habit’s Formation

We consider a proximal algorithm with quasi distance applied to nonconvex and nonsmooth functions involving analytic properties for an unconstrained minimization problem. We show the behavioral importance of this proximal point model for habit’s formation in Decision and Making Sciences. Article Download View A Proximal Algorithm with Quasi Distance. Application to Habit's Formation

Identifying Active Manifolds in Regularization Problems

In this work we consider the problem $\min_x \{ f(x) + P(x) \}$, where $f$ is $\mathcal{C}^2$ and $P$ is nonsmooth, but contains an underlying smooth substructure. Specifically, we assume the function $P$ is prox-regular partly smooth with respect to a active manifold $\M$. Recent work by Tseng and Yun \cite{tseng-yun-2009}, showed that such a … Read more

Alternating direction algorithms for total variation deconvolution in image reconstruction

Image restoration and reconstruction from blurry and noisy observation is known to be ill-posed. To stabilize the recovery, total variation (TV) regularization was introduced by Rudin, Osher and Fatemi in \cite{LIR92}, which has demonstrated superiority in preserving image edges. However, the nondifferentiability of TV makes the underlying optimization problems difficult to solve. In this paper, … Read more