The Principle of Hamilton for Mechanical Systems with Impacts and Unilateral Constraints

An action integral is presented for Hamiltonian mechanics in canonical form with unilateral constraints and/or impacts. The transition conditions on generalized impulses and the energy are presented as variational inequalities, which are obtained by the application of discontinuous transversality conditions. The energetical behavior for elastic, plastic and blocking type impacts are analyzed. A general impact … Read more

Robust Block Coordinate Descent

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At … Read more

Beyond the Birkhoff Polytope: Convex Relaxations for Vector Permutation Problems

The Birkhoff polytope (the convex hull of the set of permutation matrices) is frequently invoked in formulating relaxations of optimization problems over permutations. The Birkhoff polytope is represented using Θ(n^2) variables and constraints, significantly more than the n variables one could use to represent a permutation as a vector. Using a recent construction of Goemans … Read more

Hypotheses testing on the optimal values of several risk-neutral or risk-averse convex stochastic programs and application to hypotheses testing on several risk measure values

Given an arbitrary number of risk-averse or risk-neutral convex stochastic programs, we study hypotheses testing problems aiming at comparing the optimal values of these stochastic programs on the basis of samples of the underlying random vectors. We propose non-asymptotic tests based on confidence intervals on the optimal values of the stochastic programs obtained using the … Read more

Local Linear Convergence of Forward–Backward under Partial Smoothness

In this paper, we consider the Forward–Backward proximal splitting algorithm to minimize the sum of two proper closed convex functions, one of which having a Lipschitz–continuous gradient and the other being partly smooth relatively to an active manifold $\mathcal{M}$. We propose a unified framework in which we show that the Forward–Backward (i) correctly identifies the … Read more

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions

Splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which the simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable algorithms, which often obtain nearly state-of-the-art performance. … Read more

Discrete Approximations of a Controlled Sweeping Process

The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhedral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of … Read more

An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. … Read more

Global convergence of splitting methods for nonconvex composite optimization

We consider the problem of minimizing the sum of a smooth function $h$ with a bounded Hessian, and a nonsmooth function. We assume that the latter function is a composition of a proper closed function $P$ and a surjective linear map $\M$, with the proximal mappings of $\tau P$, $\tau > 0$, simple to compute. … Read more