Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient framework has been used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth … Read more

Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions

We suggest here a least-change correction to available finite element (FE) solution. This postprocessing procedure is aimed at recovering the monotonicity and some other important properties that may not be exhibited by the FE solution. It is based on solving a monotonic regression problem with some extra constraints. One of them is a linear equality-type … Read more

On the Moreau-Yosida regularization of the vector k-norm related functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector $k$-norm function, the indicator function of its epigraph, and the indicator function of the vector $k$-norm ball. We start with settling the vector $k$-norm case via applying the existing breakpoint searching algorithms to … Read more

Projection methods in conic optimization

There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called … Read more

Snow water equivalent estimation using blackbox optimization

Accurate measurements of snow water equivalent (SWE) is an important factor in managing water resources for hydroelectric power generation. SWE over a catchment area may be estimated via kriging on measures obtained by snow monitoring devices positioned at strategic locations. The question studied in this paper is to find the device locations that minimize the … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more

Convergence analysis of a proximal Gauss-Newton method

An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of … Read more

Interior-Point Algorithms for a Generalization of Linear Programming and Weighted Centering

We consider an extension of ordinary linear programming (LP) that adds weighted logarithmic barrier terms for some variables. The resulting problem generalizes both LP and the problem of finding the weighted analytic center of a polytope. We show that the problem has a dual of the same form and give complexity results for several different … Read more

Stochastic Variational Inequalities:Residual Minimization Smoothing/Sample Average approximations

The stochastic variational inequality (SVI) has been used widely, in engineering and economics, as an effective mathematical model for a number of equilibrium problems involving uncertain data. This paper presents a new expected residual minimization (ERM) formulation for a class of SVI. The objective of the ERM-formulation is Lipschitz continuous and semismooth which helps us … Read more

Optimal Distributed Online Prediction using Mini-Batches

Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of web-scale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this work we present the distributed mini-batch algorithm, a method … Read more