On partially sparse recovery

In this paper we consider the problem of recovering a partially sparse solution of an underdetermined system of linear equations by minimizing the l1-norm of the part of the solution vector which is known to be sparse. Such a problem is closely related to the classical problem in Compressed Sensing where the l1-norm of the … Read more

Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization

Interpolation-based trust-region methods are an important class of algorithms for Derivative-Free Optimization which rely on locally approximating an objective function by quadratic polynomial interpolation models, frequently built from less points than there are basis components. Often, in practical applications, the contribution of the problem variables to the objective function is such that many pairwise correlations … Read more

On partially sparse recovery

In this paper we consider the problem of recovering a partially sparse solution of an underdetermined system of linear equations by minimizing the l1-norm of the part of the solution vector which is known to be sparse. Such a problem is closely related to the classical problem in Compressed Sensing where the l1-norm of the … Read more

Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization

Interpolation-based trust-region methods are an important class of algorithms for Derivative-Free Optimization which rely on locally approximating an objective function by quadratic polynomial interpolation models, frequently built from less points than there are basis components. Often, in practical applications, the contribution of the problem variables to the objective function is such that many pairwise correlations … Read more

Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions

We suggest here a least-change correction to available finite element (FE) solution. This postprocessing procedure is aimed at recovering the monotonicity and some other important properties that may not be exhibited by the FE solution. It is based on solving a monotonic regression problem with some extra constraints. One of them is a linear equality-type … Read more

Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient framework has been used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth … Read more

On the Moreau-Yosida regularization of the vector k-norm related functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector $k$-norm function, the indicator function of its epigraph, and the indicator function of the vector $k$-norm ball. We start with settling the vector $k$-norm case via applying the existing breakpoint searching algorithms to … Read more

Projection methods in conic optimization

There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called … Read more

Snow water equivalent estimation using blackbox optimization

Accurate measurements of snow water equivalent (SWE) is an important factor in managing water resources for hydroelectric power generation. SWE over a catchment area may be estimated via kriging on measures obtained by snow monitoring devices positioned at strategic locations. The question studied in this paper is to find the device locations that minimize the … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more