A termination criterion for stochastic gradient descent for binary classification

We propose a new, simple, and computationally inexpensive termination test for constant step-size stochastic gradient descent (SGD) applied to binary classification on the logistic and hinge loss with homogeneous linear predictors. Our theoretical results support the effectiveness of our stopping criterion when the data is Gaussian distributed. This presence of noise allows for the possibility … Read more

Revisiting Augmented Lagrangian Duals

For nonconvex optimization problems, possibly having mixed-integer variables, a convergent primal-dual solution algorithm is proposed. The approach applies a proximal bundle method to certain augmented Lagrangian dual that arises in the context of the so-called generalized augmented Lagrangians. We recast these Lagrangians into the framework of a classical Lagrangian, by means of a special reformulation … Read more

A Partial PPa S-ADMM for Multi-Block for Separable Convex Optimization with Linear Constraints

The symmetric alternating direction method of multipliers (S-ADMM) is a classical effective method for solving two-block separable convex optimization. However, its convergence may not be guaranteed for multi-block case providing there is no additional assumptions. In this paper, we propose a partial PPa S-ADMM (referred as P3SADMM), which updates the Lagrange multiplier twice with suitable … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more

Projection and rescaling algorithm for finding most interior solutions to polyhedral conic systems

We propose a simple projection and rescaling algorithm that finds {\em most interior} solutions to the pair of feasibility problems \[ \text{find} x\in L\cap \R^n_{+} \text{ and } \text{find} \; \hat x\in L^\perp\cap\R^n_{+}, \] where $L$ is a linear subspace of $\R^n$ and $L^\perp$ is its orthogonal complement. The algorithm complements a basic procedure that … Read more

Variable Smoothing for Weakly Convex Composite Functions

We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We develop a variable smoothing algorithm, based on the Moreau envelope with … Read more

An explicit Tikhonov algorithm for nested variational inequalities

We consider nested variational inequalities consisting in a (upper-level) variational inequality whose feasible set is given by the solution set of another (lower-level) variational inequality. Purely hierarchical convex bilevel optimization problems and certain multi-follower games are particular instances of nested variational inequalities. We present an explicit and ready-to-implement Tikhonov-type solution method for such problems. We … Read more

Effectively managing diagnostic tests to monitor the COVID-19 outbreak in Italy

Urged by the outbreak of the COVID-19 in Italy, this study aims at helping to tackle the spread of the disease by resorting to operations research techniques. In particular, we propose a mathematical program to model the problem of establishing how many diagnostic tests the Italian regions must perform in order to maximize the overall … Read more

Geometry of First-Order Methods and Adaptive Acceleration

First-order operator splitting methods are ubiquitous among many fields through science and engineering, such as inverse problems, signal/image processing, statistics, data science and machine learning, to name a few. In this paper, we study a geometric property of first-order methods when applying to solve non-smooth optimization problems. With the tool of “partial smoothness”, we design … Read more

The perturbation analysis of nonconvex low-rank matrix robust recovery

In this paper, we bring forward a completely perturbed nonconvex Schatten $p$-minimization to address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted isometry property generalizes the investigation to a complete perturbation model thinking over not only noise but also perturbation, gives the restricted isometry property condition that guarantees … Read more