Asynchronous Stochastic Subgradient Methods for General Nonsmooth Nonconvex Optimization

Asynchronous distributed methods are a popular way to reduce the communication and synchronization costs of large-scale optimization. Yet, for all their success, little is known about their convergence guarantees in the challenging case of general non-smooth, non-convex objectives, beyond cases where closed-form proximal operator solutions are available. This is all the more surprising since these … Read more

Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms

Matrix Factorization is a popular non-convex objective, for which alternating minimization schemes are mostly used. They usually suffer from the major drawback that the solution is biased towards one of the optimization variables. A remedy is non-alternating schemes. However, due to a lack of Lipschitz continuity of the gradient in matrix factorization problems, convergence cannot … Read more

Acceleration of SVRG and Katyusha X by Inexact Preconditioning

Empirical risk minimization is an important class of optimization problems with many popular machine learning applications, and stochastic variance reduction methods are popular choices for solving them. Among these methods, SVRG and Katyusha X (a Nesterov accelerated SVRG) achieve fast convergence without substantial memory requirement. In this paper, we propose to accelerate these two algorithms … Read more

On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm

Recently, Kronqvist et al.rediscovered the supporting hyperplane algorithm of Veinott and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm applied to a particular … Read more

Numerical solution of generalized minimax problems

This contribution contains the description and investigation of four numerical methods for solving generalized minimax problems, which consists in the minimization of functions which are compositions of special smooth convex functions with maxima of smooth functions (the most important problem of this type is the sum of maxima of smooth functions). Section~1 is introductory. In … Read more

A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems

In this paper, we describe and establish iteration-complexity of two accelerated composite gradient (ACG) variants to solve a smooth nonconvex composite optimization problem whose objective function is the sum of a nonconvex differentiable function f with a Lipschitz continuous gradient and a simple nonsmooth closed convex function h. When f is convex, the first ACG … Read more

Variable smoothing for convex optimization problems using stochastic gradients

We aim to solve a structured convex optimization problem, where a nonsmooth function is composed with a linear operator. When opting for full splitting schemes, usually, primal-dual type methods are employed as they are effective and also well studied. However, under the additional assumption of Lipschitz continuity of the nonsmooth function which is composed with … Read more

Equivalences among the chi measure, Hoffman constant, and Renegar’s distance to ill-posedness

We show the equivalence among the following three condition measures of a full column rank matrix $A$: the chi measure, the signed Hoffman constant, and the signed distance to ill-posedness. The latter two measures are constructed via suitable collections of matrices obtained by flipping the signs of some rows of $A$. Our results provide a … Read more

General Convergence Rates Follow From Specialized Rates Assuming Growth Bounds

Often in the analysis of first-order methods, assuming the existence of a quadratic growth bound (a generalization of strong convexity) facilitates much stronger convergence analysis. Hence the analysis is done twice, once for the general case and once for the growth bounded case. We give a meta-theorem for deriving general convergence rates from those assuming … Read more

Indefinite linearized augmented Lagrangian method for convex programming with linear inequality constraints

The augmented Lagrangian method (ALM) is a benchmark for tackling the convex optimization problem with linear constraints; ALM and its variants for linearly equality-constrained convex minimization models have been well studied in the literatures. However, much less attention has been paid to ALM for efficiently solving the linearly inequality-constrained convex minimization model. In this paper, … Read more