Inexact alternating projections on nonconvex sets

Given two arbitrary closed sets in Euclidean space, a simple transversality condition guarantees that the method of alternating projections converges locally, at linear rate, to a point in the intersection. Exact projection onto nonconvex sets is typically intractable, but we show that computationally-cheap inexact projections may suffice instead. In particular, if one set is defined … Read more

Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity

Regularized empirical risk minimization problem with linear predictor appears frequently in machine learning. In this paper, we propose a new stochastic primal-dual method to solve this class of problems. Different from existing methods, our proposed methods only require O(1) operations in each iteration. We also develop a variance-reduction variant of the algorithm that converges linearly. … Read more

An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

Projective Hedging for Stochastic Programming

We propose a decomposition algorithm for multistage stochastic programming that resembles the progressive hedging method of Rockafellar and Wets, but is provably capable of several forms of asynchronous operation. We derive the method from a class of projective operator splitting methods fairly recently proposed by Combettes and Eckstein, significantly expanding the known applications of those … Read more

Performance indicators in multiobjective optimization

In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to … Read more

Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems

We understand linear convergence of some first-order methods such as the proximal gradient method (PGM), the proximal alternating linearized minimization (PALM) algorithm and the randomized block coordinate proximal gradient method (R-BCPGM) for minimizing the sum of a smooth convex function and a nonsmooth convex function from a variational analysis perspective. We introduce a new analytic … Read more

Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis

Despite the rich literature, the linear convergence of alternating direction method of multipliers (ADMM) has not been fully understood even for the convex case. For example, the linear convergence of ADMM can be empirically observed in a wide range of applications, while existing theoretical results seem to be too stringent to be satisfied or too … Read more

Global Convergence in Deep Learning with Variable Splitting via the Kurdyka-{\L}ojasiewicz Property

Deep learning has recently attracted a significant amount of attention due to its great empirical success. However, the effectiveness in training deep neural networks (DNNs) remains a mystery in the associated nonconvex optimizations. In this paper, we aim to provide some theoretical understanding on such optimization problems. In particular, the Kurdyka-{\L}ojasiewicz (KL) property is established … Read more

Understanding the Acceleration Phenomenon via High-Resolution Differential Equations

Gradient-based optimization algorithms can be studied from the perspective of limiting or- dinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distin- guish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alter- native limiting process that yields high-resolution ODEs. We … Read more

Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods

Logistic regression is one of the most popular methods in binary classification, wherein estimation of model parameters is carried out by solving the maximum likelihood (ML) optimization problem, and the ML estimator is defined to be the optimal solution of this problem. It is well known that the ML estimator exists when the data is … Read more