Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

First order optimality conditions for mathematical programs with second-order cone complementarity constraints

In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by a second-order cone. We show that if the SOCMPCC is considered as an optimization problem with convex cone constraints, then Robinson’s constraint qualification … Read more

An O(1/k) Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing $\phi(Bu)+H(u)$ where $H$ and $\phi$ are convex functions, and $\phi$ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of … Read more

Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of … Read more

Decomposition algorithm for large-scale two-stage unit-commitment

Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein … Read more

Preconditioning of a Generalized Forward-Backward Splitting and Application to Optimization on Graphs

We present a preconditioning of a generalized forward-backward splitting algorithm for finding a zero of a sum of maximally monotone operators \sum_{i=1}^n A_i + B with B cocoercive, involving only the computation of B and of the resolvent of each A_i separately. This allows in particular to minimize functionals of the form \sum_{i=1}^n g_i + … Read more

Linearly Convergent Away-Step Conditional Gradient for Non-strongly Convex Functions

We consider the problem of minimizing a function, which is the sum of a linear function and a composition of a strongly convex function with a linear transformation, over a compact polyhedral set. Jaggi and Lacoste-Julien [14] showed that the conditional gradient method with away steps employed on the aforementioned problem without the additional linear … Read more

Distributed Gradient Methods with Variable Number of Working Nodes

We consider distributed optimization where $N$ nodes in a connected network minimize the sum of their local costs subject to a common constraint set. We propose a distributed projected gradient method where each node, at each iteration $k$, performs an update (is active) with probability $p_k$, and stays idle (is inactive) with probability $1-p_k$. Whenever … Read more

New results on subgradient methods for strongly convex optimization problems with a unified analysis

We develop subgradient- and gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the Proximal Gradient Method (PGM) and the Conditional Gradient Method (CGM), unifying several existing methods. The unifying framework provides … Read more

Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

We show that for any positive integer $d$, there are families of switched linear systems—in fixed dimension and defined by two matrices only—that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree $\leq d$, or (ii) a polytopic Lyapunov function with $\leq d$ facets, or (iii) a piecewise … Read more