Faster Alternating Direction Method of Multipliers with a Worst-case O(1/n^2) Convergence Rate

The alternating direction method of multipliers (ADMM) is being widely used for various convex programming models with separable structures arising in specifically many scientific computing areas. The ADMM’s worst-case O(1/n) convergence rate measured by the iteration complexity has been established in the literature when its penalty parameter is a constant, where n is the iteration … Read more

Complexity bounds for primal-dual methods minimizing the model of objective function

We provide Frank-Wolfe ($\equiv$ Conditional Gradients) method with a convergence analysis allowing to approach a primal-dual solution of convex optimization problem with composite objective function. Additional properties of complementary part of the objective (strong convexity) significantly accelerate the scheme. We also justify a new variant of this method, which can be seen as a trust-region … Read more

Multiple cuts in separating plane algorithms

This paper presents an extended version of the separation plane algorithms for subgradient-based finite-dimensional nondifferentiable convex blackbox optimization. The extension introduces additional cuts for epigraph of the conjugate of objective function which improve the convergence of the algorithm. The case of affine cuts is considered in more details and it is shown that it requires … Read more

Invariance conditions for nonlinear dynamical systems

Recently, Horv\’ath, Song, and Terlaky [\emph{A novel unified approach to invariance condition of dynamical system, submitted to Applied Mathematics and Computation}] proposed a novel unified approach to study, i.e., invariance conditions, sufficient and necessary conditions, under which some convex sets are invariant sets for linear dynamical systems. In this paper, by utilizing analogous methodology, we … Read more

Frechet inequalities via convex optimization

Quantifying the risk carried by an aggregate position $S_d\defn\sum_{i=1}^d X_i$ comprising many risk factors $X_i$ is fundamental to both insurance and financial risk management. Frechet inequalities quantify the worst-case risk carried by the aggregate position given distributional information concerning its composing factors but without assuming independence. This marginal factor modeling of the aggregate position in … Read more

Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron

Steplength thresholds for invariance preserving of three types of discretization methods on a polyhedron are considered. For Taylor approximation type discretization methods we prove that a valid steplength threshold can be obtained by finding the first positive zeros of a finite number of polynomial functions. Further, a simple and efficient algorithm is proposed to numerically … Read more

A Simplified Form of Block-Iterative Operator Splitting, and an Asynchronous Algorithm Resembling the Multi-Block ADMM

This paper develops what is essentially a simplified version of the block-iterative operator splitting method already proposed by the author and P. Combettes, but with more general initialization conditions. It then describes one way of implementing this algorithm asynchronously under a computing model inspired by modern HPC environments, which consist of interconnected nodes each having … Read more

Randomized block proximal damped Newton method for composite self-concordant minimization

In this paper we consider the composite self-concordant (CSC) minimization problem, which minimizes the sum of a self-concordant function $f$ and a (possibly nonsmooth) proper closed convex function $g$. The CSC minimization is the cornerstone of the path-following interior point methods for solving a broad class of convex optimization problems. It has also found numerous … Read more

1-Bit Compressive Sensing: Reformulation and RRSP-Based Sign Recovery Theory

Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. In this paper, we first … Read more

A bound on the Carathéodory number

The Carathéodory number k(K) of a pointed closed convex cone K is the minimum among all the k for which every element of K can be written as a nonnegative linear combination of at most k elements belonging to extreme rays. Carathéodory’s Theorem gives the bound k(K) <= dim (K). In this work we observe … Read more