Convex envelopes of bounded monomials on two-variable cones

We consider an \(n\)-variate monomial function that is restricted both in value by lower and upper bounds and in domain by two homogeneous linear inequalities. Such functions are building blocks of several problems found in practical applications, and that fall under the class of Mixed Integer Nonlinear Optimization. We show that the upper envelope of … Read more

A more efficient reformulation of complex SDP as real SDP

This note proposes a new reformulation of complex semidefinite programs (SDPs) as real SDPs. As an application, we present an economical reformulation of complex SDP relaxations of complex polynomial optimization problems as real SDPs and derive some further reductions by exploiting inner structure of the complex SDP relaxations. Various numerical examples demonstrate that our new … Read more

Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvector Disjunctions

Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate … Read more

Nonexpansive Markov Operators and Random Function Iterations for Stochastic Fixed Point Problems

We study the convergence of random function iterations for finding an invariant measure of the corresponding Markov operator. We call the problem of finding such an invariant mea- sure the stochastic fixed point problem. This generalizes earlier work studying the stochastic feasibility problem, namely, to find points that are, with probability 1, fixed points of … Read more

A Radial Basis Function Method for Noisy Global Optimisation

We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on the well-established RBF method by Gutmann (2001a,c) for minimising an expensive and deterministic objective … Read more

A Slightly Lifted Convex Relaxation for Nonconvex Quadratic Programming with Ball Constraints

Globally optimizing a nonconvex quadratic over the intersection of $m$ balls in $\mathbb{R}^n$ is known to be polynomial-time solvable for fixed $m$. Moreover, when $m=1$, the standard semidefinite relaxation is exact. When $m=2$, it has been shown recently that an exact relaxation can be constructed using a disjunctive semidefinite formulation based essentially on two copies … Read more

Approximation hierarchies for copositive cone over symmetric cone and their comparison

We first provide an inner-approximation hierarchy described by a sum-of-squares (SOS) constraint for the copositive (COP) cone over a general symmetric cone. The hierarchy is a generalization of that proposed by Parrilo (2000) for the usual COP cone (over a nonnegative orthant). We also discuss its dual. Second, we characterize the COP cone over a … Read more

Explicit convex hull description of bivariate quadratic sets with indicator variables

We consider the nonconvex set \(S_n = \{(x,X,z): X = x x^T, \; x (1-z) =0,\; x \geq 0,\; z \in \{0,1\}^n\}\), which is closely related to the feasible region of several difficult nonconvex optimization problems such as the best subset selection and constrained portfolio optimization. Utilizing ideas from convex analysis and disjunctive programming, we … Read more

Recursive McCormick Linearization of Multilinear Programs

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce … Read more