On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization

We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known “Frank-Wolfe type” theorems … Read more

MIQP-Based Algorithm for the Global Solution of Economic Dispatch Problems with Valve-Point Effects

Even in a static setting, the economic load dispatch problem (ELDP)—namely the cost-optimal distribution of power among generating units to meet a specific demand subject to system constraints—turns out to be a challenge owing to the consideration of valve-point effects (VPE), which make the cost function nonsmooth and nonconvex. We present a new method, termed … Read more

Strong Convex Nonlinear Relaxations of the Pooling Problem

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by … Read more

A Branch-and-Bound based Algorithm for Nonconvex Multiobjective Optimization

A new branch-and-bound based algorithm for smooth nonconvex multiobjective optimization problems with convex constraints is presented. The algorithm computes an $(\varepsilon,\delta)$-approximation of all globally optimal solutions. We introduce the algorithm which uses selection rules, discarding and termination tests. The discarding tests are the most important aspect, as they examine in different ways whether a box … Read more

An algorithm for computing Frechet means on the sphere

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Frechet means, which are points minimising the mean distance … Read more

Global Optimization of Multilevel Electricity Market Models Including Network Design and Graph Partitioning

We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal network expansion and the optimal zonal configuration of zonal pricing electricity markets, which is an extension of the model discussed in [25] that does not include a network design problem. The two classical discrete optimization … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

Extended formulations for convex hulls of some bilinear functions

We consider the problem of characterizing the convex hull of the graph of a bilinear function $f$ on the $n$-dimensional unit cube $[0,1]^n$. Extended formulations for this convex hull are obtained by taking subsets of the facets of the Boolean Quadric Polytope (BQP). Extending existing results, we propose the systematic study of properties of $f$ … Read more

Deterministic Global Optimization with Artificial Neural Networks Embedded

Artificial neural networks (ANNs) are used in various applications for data-driven black-box modeling and subsequent optimization. Herein, we present an efficient method for deterministic global optimization of ANN embedded optimization problems. The proposed method is based on relaxations of algorithms using McCormick relaxations in a reduced-space [\textit{SIOPT}, 20 (2009), pp. 573-601] including the convex and … Read more

Optimization of Stochastic Problems with Probability Functions via Differential Evolution

Chance constrained programming, quantile/Value-at-Risk (VaR) optimization and integral quantile / Conditional Value-at-Risk (CVaR) optimization problems as Stochastic Programming Problems with Probability Functions (SPP-PF) are one of the most widely studied optimization problems in recent years. As a rule real-life SPP-PF is nonsmooth nonconvex optimization problem with complex geometry of objective function. Moreover, often it cannot … Read more