SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework

This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An … Read more

A Modeling-based Approach for Non-standard Packing Problems

This chapter examines the problem of packing tetris-like items, orthogonally, with the possibility of rotations, into a convex domain, in the presence of additional conditions. An MILP (Mixed Integer Linear Programming) and an MINLP (Mixed Integer Nonlinear Programming) models, previously studied by the author, are surveyed. An efficient formulation of the objective function, aimed at … Read more

Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

Nonlinear Regression Analysis by Global Optimization: A Case Study in Space Engineering

The search for a better understanding of complex systems calls for quantitative model development. Within this development process, model fitting to observational data (calibration) often plays an important role. Traditionally, local optimization techniques have been applied to solve nonlinear (as well as linear) model calibration problems numerically: the limitations of such approaches in the nonlinear … Read more

Three Enhancements for Optimization-Based Bound Tightening

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper … Read more

Optimized Ellipse Packings in Regular Polygons Using Embedded Lagrange Multipliers

In this work, we present model development and numerical solution approaches to the general problem of packing a collection of ellipses into an optimized regular polygon. Our modeling and solution strategy is based on the concept of embedded Lagrange multipliers. This concept is applicable to a wide range of optimization problems in which explicit analytical … Read more

Iteration-complexity of a Rockafellar’s proximal method of multipliers for convex programming based on second-order approximations

This paper studies the iteration-complexity of a new primal-dual algorithm based on Rockafellar’s proximal method of multipliers (PMM) for solving smooth convex programming problems with inequality constraints. In each step, either a step of Rockafellar’s PMM for a second-order model of the problem is computed or a relaxed extragradient step is performed. The resulting algorithm … Read more

General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers

The general ellipse packing problem is to find a non-overlapping arrangement of 𝑛 ellipses with (in principle) arbitrary size and orientation parameters inside a given type of container set. Here we consider the general ellipse packing problem with respect to an optimized circle container with minimal radius. Following the review of selected topical literature, we … Read more

On the computation of convex envelopes for bivariate functions through KKT conditions

In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. … Read more

Exact SDP Relaxations with Truncated Moment Matrix for Binary Polynomial Optimization Problems

For binary polynomial optimization problems (POPs) of degree $d$ with $n$ variables, we prove that the $\lceil(n+d-1)/2\rceil$th semidefinite (SDP) relaxation in Lasserre’s hierarchy of the SDP relaxations provides the exact optimal value. If binary POPs involve only even-degree monomials, we show that it can be further reduced to $\lceil(n+d-2)/2\rceil$. This bound on the relaxation order … Read more