The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more

Convex duality and entropy-based moment closure: Characterizing degenerate densities

A common method for constructing a function from a finite set of moments is to solve a constrained minimization problem. The idea is to find, among all functions with the given moments, that function which minimizes a physically motivated, strictly convex functional. In the kinetic theory of gases, this functional is the kinetic entropy; the … Read more

An estimation-free, robust conditional value-at-risk portfolio allocation model

We propose a novel optimization model for risk-averse investors to obtain robust solutions for portfolio allocation problems. Unlike related models in the literature, no historical data or statistical estimation techniques are used to compute the parameters of the model. Instead, the parameters are directly obtained from current prices of options on the assets being considered. … Read more

Sensitivity analysis in linear semi-infinite programming via partitions

This paper provides sufficient conditions for the optimal value function of a given linear semi-infinite programming problem to depend linearly on the size of the perturbations, when these perturbations are directional, involve either the cost coefficients or the right-hand-side function or both, and they are sufficiently small. Two kinds of partitions are considered. The first … Read more

Cascading – An adjusted exchange method for robust conic programming

It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski [2] increases the numerical complexity of the solution compared to the original problem. Kocvara, Nemirovski and Zowe therefore introduced in [9] an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show … Read more

PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES

The notion of soft thresholding plays a central role in problems from various areas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal thresholding and investigate its properties, providing in particular several characterizations of … Read more

Stability and Sensitivity Analysis for Optimal Control Problems with a First-order State Constraint having (nonessential) Touch Points

The paper deals with an optimal control problem with a scalar first-order state constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of the trajectory is not stable. We show how to perform a sensitivity analysis that predicts which touch points will, under a small perturbation, become inactive, remain touch … Read more

Static-arbitrage bounds on the prices of basket options via linear programming

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (sub-replicating) strategies for the upper (lower) bound problem. The dual counterparts of the … Read more

Primal-dual interior point methods for PDE-constrained optimization

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in $L^p$. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier $L^\infty$-setting is analyzed, but also a more involved $L^q$-analysis, $q