Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can choose the next item dynamically based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more

Constructing a Small Compact Binary Model for the Travelling Salesman Problem

A variety of formulations for the Travelling Salesman Problem as Mixed Integer Program have been proposed. They contain either non-binary variables or the number of constraints and variables is large. We want to give a new formulation that consists solely of binary variables; the number of variables and the number of constraints are of order … Read more

Simplified semidefinite and completely positive relaxations

This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented by Burer. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the … Read more

Improved compact formulations for graph partitioning in sparse graphs

Given a graph $G=(V,E)$ where $|V|=n$ and $|E|=m$. Graph partitioning problems on $G$ are to find a partition of the vertices in $V$ into clusters satisfying several additional constraints in order to minimize or maximize the number (or the weight) of the edges whose endnodes do not belong to the same cluster. These problems are … Read more

Min-max-min Robust Combinatorial Optimization

The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to … Read more

A MAX-CUT formulation of 0/1 programs

We consider the linear or quadratic 0/1 program \[P:\quad f^*=\min\{ c^Tx+x^TFx : \:A\,x =\b;\:x\in\{0,1\}^n\},\] for some vectors $c\in R^n$, $b\in Z^m$, some matrix $A\in Z^{m\times n}$ and some real symmetric matrix $F\in R^{n\times n}$. We show that $P$ can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of … Read more

Reoptimization Techniques for MIP Solvers

Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus … Read more

Sparse optimization for inverse problems in atmospheric modelling

We consider inverse problems in atmospheric modelling. Instead of using the ordinary least squares, we add a weighting matrix based on the topology of measurement points and show the connection with Bayesian modelling. Since the source–receptor sensitivity matrix is usually ill-conditioned, the problem is often regularized, either by perturbing the objective function or by modifying … Read more

An ILP-based local search procedure for the VRP with pickups and deliveries

In this paper we address the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), an extension of the classical Vehicle Routing Problem (VRP) where we consider precedences among customers, and develop an Integer Linear Programming (ILP) based local search procedure. We consider the capacitated one-to-one variant, where a particular precedence must be satisfied between pairs … Read more

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We evaluated … Read more