Learning Generalized Strong Branching for Set Covering, Set Packing, and 0-1 Knapsack Problems

Branching on a set of variables, rather than on a single variable, can give tighter bounds at the child nodes and can result in smaller search trees. However, selecting a good set of variables to branch on is even more challenging than selecting a good single variable to branch on. Generalized strong branching extends the … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

Integer packing sets form a well-quasi-ordering

An integer packing set is a set of non-negative integer vectors with the property that, if a vector x is in the set, then every non-negative integer vector y with y ≤ x is in the set as well. Integer packing sets appear naturally in Integer Optimization. In fact, the set of integer points in … Read more

Lossless Compression of Deep Neural Networks

Deep neural networks have been successful in many predictive modeling tasks, such as image and language recognition, where large neural networks are often used to obtain good accuracy. Consequently, it is challenging to deploy these networks under limited computational resources, such as in mobile devices. In this work, we introduce an algorithm that removes units … Read more

Exact and Heuristic Approaches for a New Circular Layout Problem

We discuss a new facility layout problem, the so-called Directed Circular Facility Layout Problem (DCFLP). The DCFLP aims to find an optimal arrangement of machines on a circular material handling system such that the total weighted sum of the center-to-center distances between all pairs of machines measured in clockwise direction is minimized. Several real-world applications, … Read more

Conflict-Free Learning for Mixed Integer Programming

Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, … Read more

Implementing Automatic Benders Decomposition in a Modern MIP Solver

We describe the automatic Benders decomposition implemented in the commercial solver IBM CPLEX. We propose several improvements to the state-of-the-art along two lines: making a numerically robust method able to deal with the general case and improving the efficiency of the method on models amenable to decomposition. For the former, we deal with: unboundedness, failures … Read more

Computational Aspects of Infeasibility Analysis in Mixed Integer Programming

The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The … Read more

A Solution Framework for Linear PDE-Constrained Mixed-Integer Problems

We present a general numerical solution method for control problems with PDE-defined state variables over a finite set of binary or continuous control variables. We show empirically that a naive approach that applies a numerical discretization scheme to the PDEs (and if necessary a linearization scheme) to derive constraints for a mixed-integer linear program (MILP) … Read more

Optimal time-and-level-of-use price setting for an energy retailer

This paper presents a novel price setting optimization problem for an energy retailer in the smart grid. In this framework the retailer buys energy from multiple generators via bilateral contracts, and sells it to a population of smart homes using Time-and-Level-of-Use prices (TLOU). TLOU is an energy price structure recently introduced in the literature, where … Read more