n-step cycle inequalities: facets for continuous n-mixing set and strong cuts for multi-module capacitated lot-sizing problem

In this paper, we introduce a generalization of the continuous mixing set (which we refer to as the continuous n-mixing set). This set is closely related to the feasible set of the multi-module capacitated lot-sizing (MML) problem with(out) backlogging. We develop new classes of valid inequalities for this set, referred to as n’-step cycle inequalities, … Read more

A Parallel Local Search Framework for the Fixed-Charge Multicommodity Network Flow Problem

We present a parallel local search approach for obtaining high quality solutions to the Fixed Charge Multi-commodity Network Flow problem (FCMNF). The approach proceeds by improving a given feasible solution by solving restricted instances of the problem where flows of certain commodities are fixed to those in the solution while the other commodities are locally … Read more

The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences

This paper presents a novel application of operations research techniques to the analysis of HIV env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying … Read more

A new mixed integer linear programming formulation for one problem of exploration of online social networks

Enormous global popularity of online social network sites has initiated numerous studies and methods investigating different aspects of their use, so some concepts from network-based studies in optimization theory can be used for research into online networks. In Gaji\’c (2014) are given a several new mixed integer linear programming formulations for first and second problem … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more

How important are branching decisions: fooling MIP solvers

We show the importance of selecting good branching variables by exhibiting a family of instances for which an optimal solution is both trivial to find and provably optimal by a fixed-size branch-and-bound tree, but for which state-of-the-art Mixed Integer Programming solvers need an increasing amount of resources. The instances encode the edge-coloring problem on a … Read more

A Note on Linear On/Off Constraints

This note studies compact representations of linear on/off constraints in mixed-integer linear optimization. A characterization of the convex hull of linear disjunctions is given in the space of original variables. This result can improve formulations of mixed-integer linear programs featuring on/off constraints by reducing the integrality gap in a Branch and Bound approach. Citation @article{, … Read more

Robust optimal sizing of an hybrid energy stand-alone system

This paper deals with the optimal design of a stand-alone hybrid system composed of wind turbines, solar photovoltaic panels and batteries. To compensate for a possible lack of energy from these sources, an auxiliary fuel generator uarantees to meet the demand in every case but its use induces important costs. We have chosen a two-stage … Read more

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. III. Foundations for the k-Dimensional Case with Applications to k=2

We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, (1) we present the general regular solution to Cauchy’s additive functional equation on bounded convex domains. This provides a k-dimensional generalization of the so-called interval lemma, allowing us to deduce affine properties of the function from certain … Read more

Semidefinite Programming Reformulation of Completely Positive Programs: Range Estimation and Best-Worst Choice Modeling

We show that the worst case moment bound on the expected optimal value of a mixed integer linear program with a random objective c is closely related to the complexity of characterizing the convex hull of the points CH{(1 x) (1 x)’: x \in X} where X is the feasible region. In fact, we can … Read more