Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clustering Problem

The minimum sum-of-squares clustering problem is a very important problem in data mining and machine learning with very many applications in, e.g., medicine or social sciences. However, it is known to be NP-hard in all relevant cases and to be notoriously hard to be solved to global optimality in practice. In this paper, we develop … Read more

An SDP Relaxation for the Sparse Integer Least Squares Problem

In this paper, we study the sparse integer least squares problem (SILS), an NP-hard variant of least squares with sparse {0, 1, -1}-vectors. We propose an l1-based SDP relaxation, and a randomized algorithm for SILS, which computes feasible solutions with high probability with an asymptotic approximation ratio 1/T^2 as long as the sparsity constant σ … Read more

A solver for multiobjective mixed-integer convex and nonconvex optimization

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are … Read more

Solving Two-Trust-Region Subproblems using Semidefinite Optimization with Eigenvector Branching

Semidefinite programming (SDP) problems typically utilize the constraint that X-xx’ is PSD to obtain a convex relaxation of the condition X=xx’, where x is an n-vector. In this paper we consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx’. This branching technique is related to previous work of Saxeena, … Read more

The impact of passive social media viewers in influence maximization

A frequently studied problem in the context of digital marketing for online social networks is the influence maximization problem that seeks for an initial seed set of influencers to trigger an information propagation cascade (in terms of active message forwarders) of expected maximum impact. Previously studied problems typically neglect that the probability that individuals passively … Read more

The Chvátal-Gomory Procedure for Integer SDPs with Applications in Combinatorial Optimization

In this paper we study the well-known Chvátal-Gomory (CG) procedure for the class of integer semidefinite programs (ISDPs). We prove several results regarding the hierarchy of relaxations obtained by iterating this procedure. We also study different formulations of the elementary closure of spectrahedra. A polyhedral description of the elementary closure for a specific type of … Read more

New Algorithm to Solve Mixed Integer Quadratically Constrained Quadratic Programming Problems Using Piecewise Linear Approximation

Techniques and methods of linear optimization underwent a significant improvement in the 20th century which led to the development of reliable mixed integer linear programming (MILP) solvers. It would be useful if these solvers could handle mixed integer nonlinear programming (MINLP) problems. Piecewise linear approximation (PLA) is one of most popular methods used to transform … Read more

On the convex hull of convex quadratic optimization problems with indicators

We consider the convex quadratic optimization problem with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of a single positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of … Read more

Multiple-Periods Locally-Facet-Based MIP Formulations for the Unit Commitment Problem

The thermal unit commitment (UC) problem has historically been formulated as a mixed integer quadratic programming (MIQP), which is difficult to solve efficiently, especially for large-scale systems. The tighter characteristic reduces the search space, therefore, as a natural consequence, significantly reduces the computational burden. In literatures, many tightened formulations for a single unit with parts … Read more

A Finitely Convergent Cutting Plane, and a Bender’s Decomposition Algorithm for Mixed-Integer Convex and Two-Stage Convex Programs using Cutting Planes

We consider a general mixed-integer convex program. We first develop an algorithm for solving this problem, and show its nite convergence. We then develop a finitely convergent decomposition algorithm that separates binary variables from integer and continuous variables. The integer and continuous variables are treated as second stage variables. An oracle for generating a parametric … Read more