A Probing Algorithm for MINLP with Failure Prediction by SVM

Bound tightening is an important component of algorithms for solving nonconvex Mixed Integer Nonlinear Programs. A {\em probing} algorithm is a bound-tightening procedure that explores the consequences of restricting a variable to a subinterval with the goal of tightening its bounds. We propose a variant of probing where exploration is based on iteratively applying a … Read more

Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets

In this paper, we study properties of general closed convex sets that determine the closed-ness and polyhedrality of the convex hull of integer points contained in it. We first present necessary and sufficient conditions for the convex hull of integer points contained in a general convex set to be closed. This leads to useful results … Read more

An Exact Penalty Global Optimization Approach for Mixed-Integer Programming Problems

In this work, we propose a global optimization approach for mixed-integer programming problems. To this aim, we preliminarily de ne an exact penalty algorithm model for globally solving general problems and we show its convergence properties. Then, we describe a particular version of the algorithm that solves mixed integer problems. Citation DIS Technical Report n. 17, … Read more

DERIVATIVE-FREE METHODS FOR BOUND CONSTRAINED MIXED-INTEGER OPTIMIZATION

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems … Read more

Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs

We describe a computationally effective method for generating disjunctive inequalities for convex mixed-integer nonlinear programs (MINLPs). The method relies on solving a sequence of cut-generating linear programs, and in the limit will generate an inequality as strong as can be produced by the cut-generating nonlinear program suggested by Stubbs and Mehrotra. Using this procedure, we … Read more

Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach

We consider in this paper quadratic programming problems with cardinality and minimum threshold constraints which arise naturally in various real-world applications such as portfolio selection and subset selection in regression. We propose a new semidefinite program (SDP) approach for computing the “best” diagonal decomposition that gives the tightest continuous relaxation of the perspective reformulation. We … Read more

On the Chvtal-Gomory Closure of a Compact Convex Set

In this paper, we show that the Chatal-Gomory closure of a compact convex set is a rational polytope. This resolves an open question discussed in Schrijver 1980 and generalizes the same result for the case of rational polytopes (Schrijver 1980), rational ellipsoids (Dey and Vielma 2010) and strictly convex sets (Dadush et. al 2010). In … Read more

Construction of Risk-Averse Enhanced Index Funds

We propose a partial replication strategy to construct risk-averse enhanced index funds. Our model takes into account the parameter estimation risk by defining the asset returns and the return covariance terms as random variables. The variance of the index fund return is forced to be below a low-risk threshold with a large probability, thereby limiting … Read more

Non-linear approximations for solving 3D-packing MIP models: a heuristic approach

This article extends a previous work focused on a mixed integer programming (MIP) based heuristic approach, aimed at solving non-standard three-dimensional problems with additional conditions. The paper that follows considers a mixed integer non-linear (MINLP) reformulation of the previous model, to improve the former heuristic, based on linear relaxation. The approach described herewith is addressed, … Read more

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this … Read more