The Chvatal-Gomory Closure of a Strictly Convex Body

In this paper, we prove that the Chvatal-Gomory closure of a set obtained as an intersection of a strictly convex body and a rational polyhedron is a polyhedron. Thus, we generalize a result of Schrijver which shows that the Chvatal-Gomory closure of a rational polyhedron is a polyhedron. ArticleDownload View PDF

Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra

In this paper, we study the relationship between {\em 2D lattice-free cuts}, the family of cuts obtained by taking two-row relaxations of a mixed-integer program (MIP) and applying intersection cuts based on maximal lattice-free sets in $\R^2$, and various types of disjunctions. Recently, Li and Richard (2007) studied disjunctive cuts obtained from $t$-branch split disjunctions … Read more

Separating Doubly Nonnegative and Completely Positive Matrices

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

Concrete Structure Design Using Mixed-Integer Nonlinear Programming with Complementarity Constraints

We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete (RC) structures that satisfy building code requirements. The objective function includes material and labor costs for concrete, steel reinforcing bars, and formwork according to typical contractor methods. Restrictions enforce correct geometry of the cross-section dimensions for each element and relative … Read more

Mixed Integer NonLinear Programs featuring “On/Off ” constraints: convex analysis and applications

We call ”on/off” constraint an algebraic constraint that is activated if and only if a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring ”on/off” constraints. We study the simple set defined by one ”on/off” constraint … Read more

Algorithms and Software for Convex Mixed Integer Nonlinear Programs

This paper provides a survey of recent progress and software for solving mixed integer nonlinear programs (MINLP) wherein the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in very years. By exploiting analogies to the case of … Read more

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We fi rst derive some basic properties of value functions of quadratic integer programs. We then propose a two-phase solution approach. The first phase constructs the value functions of quadratic integer programs in both stages. The second phase … Read more

Block Structured Quadratic Programming for the Direct Multiple Shooting Method for Optimal Control

In this contribution we address the efficient solution of optimal control problems of dynamic processes with many controls. Such problems arise, e.g., from the outer convexification of integer control decisions. We treat this optimal control problem class using the direct multiple shooting method to discretize the optimal control problem. The resulting nonlinear problems are solved … Read more

Perspective Reformulation and Applications

In this paper we survey recent work on the perspective reformulation approach that generates tight, tractable relaxations for convex mixed integer nonlinear programs (MINLP)s. This preprocessing technique is applicable to cases where the MINLP contains binary indicator variables that force continuous decision variables to take the value 0, or to belong to a convex set. … Read more