Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We fi rst derive some basic properties of value functions of quadratic integer programs. We then propose a two-phase solution approach. The first phase constructs the value functions of quadratic integer programs in both stages. The second phase … Read more

Block Structured Quadratic Programming for the Direct Multiple Shooting Method for Optimal Control

In this contribution we address the efficient solution of optimal control problems of dynamic processes with many controls. Such problems arise, e.g., from the outer convexification of integer control decisions. We treat this optimal control problem class using the direct multiple shooting method to discretize the optimal control problem. The resulting nonlinear problems are solved … Read more

Perspective Reformulation and Applications

In this paper we survey recent work on the perspective reformulation approach that generates tight, tractable relaxations for convex mixed integer nonlinear programs (MINLP)s. This preprocessing technique is applicable to cases where the MINLP contains binary indicator variables that force continuous decision variables to take the value 0, or to belong to a convex set. … Read more

The Delivery Man Problem with Time Windows

In this paper, a variant of the Traveling Salesman Problem with Time Windows is considered, which consists in minimizing the sum of travel durations between a depot and several customer locations. Two mixed integer linear programming formulations are presented for this problem: a classical arc flow model and a sequential assignment model. Several polyhedral results … Read more

Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs

In this paper, we give a finite disjunctive programming procedure to obtain the convex hull of general mixed-integer linear programs (MILP) with bounded integer variables. We propose a finitely convergent convex hull tree algorithm which constructs a linear program that has the same optimal solution as the associated MILP. In addition, we combine the standard … Read more

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. Citation Unpublished. Columbia University, BHP Billiton, August 2009. … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Code verification by static analysis: a mathematical programming approach

Automatic verification of computer code is of paramount importance in embedded systems supplying essential services. One of the most important verification techniques is static code analysis by abstract interpretation: the concrete semantics of a programming language (i.e.the values $\chi$ that variable symbols {\tt x} appearing in a program can take during its execution) are replaced … Read more

A note on Burer’s copositive representation of mixed-binary QPs

In an important paper, Burer recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum … Read more

GRASP with path relinking heuristics for the antibandwidth problem

This paper proposes a linear integer programming formulation and several heuristics based on GRASP and path relinking for the antibandwidth problem. In the antibandwidth problem, one is given an undirected graph with N nodes and must label the nodes in a way that each node receives a unique label from the set {1, 2, …, … Read more