MIP-Based Instantaneous Control of Mixed-Integer PDE-Constrained Gas Transport Problems

We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations … Read more

Lifted Polymatroid Inequalities for Mean-Risk Optimization with Indicator Variables

We investigate a mixed 0-1 conic quadratic optimization problem with indicator variables arising in mean-risk optimization. The indicator variables are often used to model non-convexities such as fixed charges or cardinality constraints. Observing that the problem reduces to a submodular function minimization for its binary restriction, we derive three classes of strong convex valid inequalities … Read more

FiberSCIP – A shared memory parallelization of SCIP

Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There … Read more

Optimal Installation for Electric Vehicle Wireless Charging Lanes

Range anxiety, the persistent worry about not having enough battery power to complete a trip, remains one of the major obstacles to widespread electric-vehicle adoption. As cities look to attract more users to adopt electric vehicles, the emergence of wireless in-motion car charging technology presents itself as a solution to range anxiety. For a limited … Read more

Error bounds for monomial convexification in polynomial optimization

Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of $[0,1]^n$. This … Read more

Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand

In this article, we introduce and study a two-stage stochastic optimization problem suitable to solve strategic optimization problems of car-sharing systems that utilize electric cars. By combining the individual advantages of car-sharing and electric vehicles, such electric car-sharing systems may help to overcome future challenges related to pollution, congestion, or shortage of fossil fuels. A … Read more

Location of charging stations in electric car sharing systems

Electric vehicles are a prime candidate for use within an urban car sharing system, both from an economic and environmental perspective. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system’s operational area where cars can be charged between uses. In this … Read more

Co-optimization of Demand Response and Reserve Offers for a Major Consumer

In this paper we present a stochastic optimization problem for a strategic major consumer who has flexibility over its consumption and can offer reserve. Our model is a bi-level optimization model (reformulated as a mixed-integer program) that embeds the optimal power flow problem, in which electricity and reserve are co-optimized. We implement this model for … Read more

A hybrid approach for Bi-Objective Optimization

A large number of the real world planning problems which are today solved using Operations Research methods are actually multi-objective planning problems, but most of them are solved using single-objective methods. The reason for converting, i.e. simplifying, multi- objective problems to single-objective problems is that no standard multi-objective solvers exist and specialized algorithms need to … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more