Closing the gap in pivot methods for linear programming

We propose pivot methods that solve linear programs by trying to close the duality gap from both ends. The first method maintains a set $\B$ of at most three bases, each of a different type, in each iteration: a primal feasible basis $B^p$, a dual feasible basis $B^d$ and a primal-and-dual infeasible basis $B^i$. From … Read more

Using the Johnson-Lindenstrauss lemma in linear and integer programming

The Johnson-Lindenstrauss lemma allows dimension reduction on real vectors with low distortion on their pairwise Euclidean distances. This result is often used in algorithms such as $k$-means or $k$ nearest neighbours since they only use Euclidean distances, and has sometimes been used in optimization algorithms involving the minimization of Euclidean distances. In this paper we … Read more

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either … Read more

Alternating Direction Method of Multipliers for Linear Programming

Recently the alternating direction method of multipliers (ADMM) has been widely used for various applications arising in scientific computing areas. Most of these application models are, or can be easily reformulated as, linearly constrained convex minimization models with separable nonlinear objective functions. In this note we show that ADMM can also be easily used for … Read more

Iterative Refinement for Linear Programming

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification … Read more

Dual Face Algorithm Using Gauss-Jordan Elimination for Linear Programming

The dual face algorithm uses Cholesky factorization, as would be not very suitable for sparse computations. The purpose of this paper is to present a dual face algorithm using Gauss-Jordan elimination for solving bounded-variable LP problems. ArticleDownload View PDF

Quantum and classical coin-flipping protocols based on bit-commitment and their point games

We focus on a family of quantum coin-flipping protocols based on quantum bit-commitment. We discuss how the semidefinite programming formulations of cheating strategies can be reduced to optimizing a linear combination of fidelity functions over a polytope. These turn out to be much simpler semidefinite programs which can be modelled using second-order cone programming problems. … Read more

Extended Formulations for Independence Polytopes of Regular Matroids

We show that the independence polytope of every regular matroid has an extended formulation of size quadratic in the size of its ground set. This generalizes a similar statement for (co-)graphic matroids, which is a simple consequence of Martin’s extended formulation for the spanning-tree polytope. In our construction, we make use of Seymour’s decomposition theorem … Read more

A strong polynomial gradient algorithm in Linear Programming

It has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial time. The simplex algorithm does not offer a polynomial bound, and polynomial algorithms by Khachiyan and Karmarkar don’t have the strong characteristic. The curious fact that non-linear algorithms would be needed to deliver the strongest complexity result … Read more