Iterative Refinement for Linear Programming

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification … Read more

Dual Face Algorithm Using Gauss-Jordan Elimination for Linear Programming

The dual face algorithm uses Cholesky factorization, as would be not very suitable for sparse computations. The purpose of this paper is to present a dual face algorithm using Gauss-Jordan elimination for solving bounded-variable LP problems. Article Download View Dual Face Algorithm Using Gauss-Jordan Elimination for Linear Programming

Quantum and classical coin-flipping protocols based on bit-commitment and their point games

We focus on a family of quantum coin-flipping protocols based on quantum bit-commitment. We discuss how the semidefinite programming formulations of cheating strategies can be reduced to optimizing a linear combination of fidelity functions over a polytope. These turn out to be much simpler semidefinite programs which can be modelled using second-order cone programming problems. … Read more

Extended Formulations for Independence Polytopes of Regular Matroids

We show that the independence polytope of every regular matroid has an extended formulation of size quadratic in the size of its ground set. This generalizes a similar statement for (co-)graphic matroids, which is a simple consequence of Martin’s extended formulation for the spanning-tree polytope. In our construction, we make use of Seymour’s decomposition theorem … Read more

A strong polynomial gradient algorithm in Linear Programming

It has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial time. The simplex algorithm does not offer a polynomial bound, and polynomial algorithms by Khachiyan and Karmarkar don’t have the strong characteristic. The curious fact that non-linear algorithms would be needed to deliver the strongest complexity result … Read more

Parallelizing the dual revised simplex method

This paper introduces the design and implementation of two parallel dual simplex solvers for general large scale sparse linear programming problems. One approach, called PAMI, extends a relatively unknown pivoting strategy called suboptimization and exploits parallelism across multiple iterations. The other, called SIP, exploits purely single iteration parallelism by overlapping computational components when possible. Computational … Read more

Vector Space Decomposition for Linear Programs

This paper describes a vector space decomposition algorithmic framework for linear programming guided by dual feasibility considerations. The resolution process moves from one basic solution to the next according to an exchange mechanism which is defined by a direction and a post-evaluated step size. The core component of this direction is obtained via the smallest … Read more

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We evaluated … Read more

Looking for strong polynomiality in Linear Programming : Arguments, conjectures, experiments, findings, and conclusion.

Until now it has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial time. The simplex algorithm with its combinatorial nature does not even offer a polynomial bound, whereas the complexity of the polynomial algorithms by Khachiyan and Karmarkar is based on the number of variables n, and … Read more