Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

A quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems

This paper provides the first meaningful documentation and analysis of an established technique which aims to obtain an approximate solution to linear programming problems prior to applying the primal simplex method. The underlying algorithm is a penalty method with naive approximate minimization in each iteration. During initial iterations an approach similar to augmented Lagrangian is … Read more

Using Nemirovski’s Mirror-Prox method as Basic Procedure in Chubanov’s method for solving homogeneous feasibility problems

We introduce a new variant of Chubanov’s method for solving linear homogeneous systems with positive variables. In the \BP\ we use a recently introduced cut in combination with Nemirovski’s Mirror-Prox method. We show that the cut requires at most $O(n^3)$ time, just as Chabonov’s cut. In an earlier paper it was shown that the new … Read more

Computational performance of a projection and rescaling algorithm

This paper documents a computational implementation of a {\em projection and rescaling algorithm} for finding most interior solutions to the pair of feasibility problems find $x\in L\cap\mathbb{R}^n_{+} $ and find $x\in L^\perp\cap\mathbb{R}^n_{+},$ where $L$ denotes a linear subspace in $\mathbb{R}^n$ and $L^\perp$ denotes its orthogonal complement. The projection and rescaling algorithm is a recently developed … Read more

Network-based Approximate Linear Programming for Discrete Optimization

We develop a new class of approximate linear programs (ALPs) that project the high-dimensional value function of dynamic programs onto a class of basis functions, each defined as a network that represents aggregrations over the state space. The resulting ALP is a minimum-cost flow problem over an extended variable space that synchronizes flows across multiple … Read more

Weak Stability of $\ell_1hBcminimization Methods in Sparse Data Reconstruction

As one of the most plausible convex optimization methods for sparse data reconstruction, $\ell_1$-minimization plays a fundamental role in the development of sparse optimization theory. The stability of this method has been addressed in the literature under various assumptions such as restricted isometry property (RIP), null space property (NSP), and mutual coherence. In this paper, … Read more

Robust Sensitivity Analysis for Linear Programming with Ellipsoidal Perturbation

Given an originally robust optimal decision and allowing perturbation parameters of the linear programming problem to run through a maximum uncertainty set controlled by a variable of perturbation radius, we do robust sensitivity analysis for the robust linear programming problem in two scenarios. One is to keep the original decision still robust optimal, the other … Read more

Maintaining a Basis Matrix in the Linear Programming Interior Point Method

To precondition the normal equation system from the linear programming (LP) interior point method, basis preconditioners choose a basis matrix dependent on column scaling factors. Two criteria for choosing the basis matrix are compared which yield a maximum volume or maximum weight basis. Finding a maximum volume basis requires a combinatorial effort, but it gives … Read more

On the effectiveness of primal and dual heuristics for the transportation problem

The transportation problem is one of the most popular problems in linear programming. Over the course of time a multitude of exact solution methods and heuristics have been proposed. Due to substantial progress of exact solvers since the mid of the last century, the interest in heuristics for the transportation problem over the last few … Read more

Membership testing for Bernoulli and tail-dependence matrices

Testing a given matrix for membership in the family of Bernoulli matrices is a longstanding problem, the many applications of Bernoulli vectors in computer science, finance, medicine, and operations research emphasize its practical relevance. A novel approach towards this problem was taken by [Fiebig et al., 2017] for lowdimensional settings d