Closed-form solutions to static-arbitrage upper bounds on basket options

We provide a closed-form solution to the problem of computing the sharpest static-arbitrage upper bound on the price of a European basket option, given the prices of vanilla call options in the underlying securities. Unlike previous approaches to this problem, our solution technique is entirely based on linear programming. This also allows us to obtain … Read more

Iteration-complexity of first-order penalty methods

This paper considers a special but broad class of convex programing (CP) problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. We study two first-order penalty methods for solving the above class of problems, namely: the quadratic penalty method and … Read more

A New Full-Newton step (n)$ Infeasible Interior-Point Algorithm for Semidefinite Optimization

Interior-point methods for semidefinite optimization have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, the second author designed an efficient primal-dual infeasible interior-point algorithm with full Newton steps for linear optimization problems. In this paper we extend the algorithm to semidefinite optimization. The algorithm constructs strictly feasible iterates for a sequence … Read more

Convexity in semi-algebraic geometry and polynomial optimization

We review several (and provide new) results on the theory of moments, sums of squares and basic semi-algebraic sets when convexity is present. In particular, we show that under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to … Read more

A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with (\sqrt{n}\log{\frac{{\rm Tr}(X^0S^0)}{\epsilon}})$ iteration complexity

In this paper, we extend the Ai-Zhang direction to the class of semidefinite optimization problems. We define a new wide neighborhood $\N(\tau_1,\tau_2,\eta)$ and, as usual, we utilize symmetric directions by scaling the Newton equation with special matrices. After defining the “positive part” and the “negative part” of a symmetric matrix, we solve the Newton equation … Read more

An elementary proof of optimality conditions for linear programming

We give an elementary proof of optimality conditions for linear programming. The proof is direct, built on a straightforward classical perturbation of the constraints, and does not require either the use of Farkas’ lemma or the use of the simplex method. CitationTechnical Report TRITA-MAT-2008-OS6, Department of Mathematics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, … Read more

Calibrating Least Squares Covariance Matrix Problems with Equality and Inequality Constraints

In many applications in statistics, finance, and insurance/reinsurance, one seeks a solution of finding a covariance matrix satisfying a large number of given linear equality and inequality constraints in a way that it deviates the least from a given symmetric matrix. The difficulty in finding an efficient method for solving this problem is due to … Read more

T-algebras and linear optimization over symmetric cones

Euclidean Jordan-algebra is a commonly used tool in designing interior point algorithms for symmetric cone programs. T-algebra, on the other hand, has rarely been used in symmetric cone programming. In this paper, we use both algebraic characterizations of symmetric cones to extend the target-following framework of linear programming to symmetric cone programming. Within this framework, … Read more

Basis partition of the space of linear programs through a differential equation

The space of linear programs (LP) can be partitioned into a finite number of sets, each corresponding to a basis. This partition is thus called the basis partition. The closed-form solution on the space of LP can be determined with the basis partition if we can characterize the basis partition. A differential equation on the … Read more