An analytic center cutting plane approach for conic programming

We analyze the problem of finding a point strictly interior to a bounded, fully dimensional set from a finite dimensional Hilbert space. We generalize the results obtained for the LP, SDP and SOCP cases. The cuts added by our algorithm are central and conic. In our analysis, we find an upper bound for the number … Read more

New Complexity Analysis of IIPMs for Linear Optimization Based on a Specific Self-Regular Function

Primal-dual Interior-Point Methods (IPMs) have shown their ability in solving large classes of optimization problems efficiently. Feasible IPMs require a strictly feasible starting point to generate the iterates that converge to an optimal solution. The self-dual embedding model provides an elegant solution to this problem with the cost of slightly increasing the size of the … Read more

The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications

For a locally optimal solution to the nonlinear semidefinite programming problem, under Robinson’s constraint qualification, the following conditions are proved to be equivalent: the strong second order sufficient condition and constraint nondegeneracy; the nonsingularity of Clarke’s Jacobian of the Karush-Kuhn-Tucker system; the strong regularity of the Karush-Kuhn-Tucker point; and others. Citation Technical Report, Department of … Read more

Termination and Verification for Ill-Posed Semidefinite Programming Problems

We investigate ill-posed semidefinite programming problems for which Slater’s constraint qualifications fail, and propose a new reliable termination criterium dealing with such problems. This criterium is scale-independent and provides verified forward error bounds for the true optimal value, where all rounding errors due to floating point arithmetic are taken into account. It is based on … Read more

Clustering via Minimum Volume Ellipsoids

We propose minimum volume ellipsoids (MVE) clustering as an alternate clustering technique to k-means clustering for Gaussian data points and explore its value and practicality. MVE clustering allocates data points into clusters that minimizes the total volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and … Read more

Projective Pre-Conditioners for Improving the Behavior of a Homogeneous Conic Linear System

We present a general theory for transforming a homogeneous conic system F: Ax = 0, x \in C, x \ne 0, to an equivalent system via projective transformation induced by the choice of a point in a related dual set. Such a projective transformation serves to pre-condition the conic system into a system that has … Read more

An Explicit Semidefinite Characterization of Satisfiability for Tseitin Instances

This paper is concerned with the application of semidefinite programming to the satisfiability problem, and in particular with using semidefinite liftings to efficiently obtain proofs of unsatisfiability. We focus on the Tseitin satisfiability instances which are known to be hard for many proof systems. We present an explicit semidefinite programming problem with dimension linear in … Read more

A second-order cone cutting surface method: complexity and application

We present an analytic center cutting surface algorithm that uses mixed linear and multiple second-order cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can be recovered after simultaneously adding $p$ second-order cone cuts in $O(p\log(p+1))$ Newton … Read more

A Framework for Kernel Regularization with Applications to Protein Clustering

We develop and apply a novel framework which is designed to extract information in the form of a positive definite kernel matrix from possibly crude, noisy, incomplete, inconsistent dissimilarity information between pairs of objects, obtainable in a variety of contexts. Any positive definite kernel defines a consistent set of distances, and the fitted kernel provides … Read more

Generalization of the primal and dual affine scaling algorithms

We obtain a class of primal ane scaling algorithms which generalize some known algorithms. This class, depending on a r-parameter, is constructed through a family of metrics generated by ��r power, r  1, of the diagonal iterate vector matrix. We prove the so-called weak convergence of the primal class for nondegenerate linearly constrained convex … Read more