A copositive programming approach to graph partitioning

We consider 3-partitioning the vertices of a graph into sets $S_1, S_2$ and $S_3$ of specified cardinalities, such that the total weight of all edges joining $S_1$ and $S_2$ is minimized. This problem is closely related to several NP-hard problems like determining the bandwidth or finding a vertex separator in a graph. We show that … Read more

A DISTRIBUTED, SCALEABLE SIMPLEX METHOD

We present a simple, scaleable, distributed simplex implementation for large linear programs. It is designed for coarse grained computation, particularly, readily available networks of workstations. Scalability is achieved by using the standard form of the simplex rather than the revised method. Virtually all serious implementations are based on the revised method because it is much … Read more

The Simplex Method – Computational Checks for the Simplex Calculation

The purpose of this paper is to derive computational checks for the simplex method of Linear Programming which can be applied at any iteration. The paper begins with a quick review of the simplex algorithm. It then goes through a theoretical development of the simplex method and its dual all the time focusing on the … Read more

Approximation Algorithms for Indefinite Complex Quadratic Maximization Problems

In this paper we consider the following two types of complex quadratic maximization problems: (i) maximize $z^{\HH} Q z$, subject to $z_k^m=1$, $k=1,…,n$, where $Q$ is a Hermitian matrix with $\tr Q=0$ and $z\in \C^n$ is the decision vector; (ii) maximize $\re y^{\HH}Az$, subject to $y_k^m=1$, $k=1,…,p$, and $z_l^m=1$, $l=1,…,q$, where $A\in \C^{p\times q}$ and … Read more

Complex Matrix Decomposition and Quadratic Programming

This paper studies the possibilities of the Linear Matrix Inequality (LMI) characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real case analog, such studies were conducted in Sturm and Zhang in 2003. In this paper it is shown that stronger results can … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Generalized Support Set Invariancy Sensitivity Analysis

Support set invariancy sensitivity analysis deals with finding the range of the parameter variation where there are optimal solutions with the same positive variables for all parameter values throughout this range. This approach to sensitivity analysis has been studied for Linear Optimization (LO) and Convex Quadratic Optimization (CQO) problems, when they are in standard form. … Read more

A primal-dual interior point method for nonlinear optimization over second order cones

In this paper, we are concerned with nonlinear minimization problems with second order cone constraints. A primal-dual interior point method is proposed for solving the problems. We also propose a new primal-dual merit function by combining the barrier penalty function and the potential function within the framework of the line search strategy, and show the … Read more

Analyticity of weighted central path and error bound for semidefinite programming

The purpose of this paper is two-fold. Firstly, we show that every Cholesky-based weighted central path for semidefinite programming is analytic under strict complementarity. This result is applied to homogeneous cone programming to show that the central paths defined by the known class of optimal self-concordant barriers are analytic in the presence of strictly complementary … Read more

An Iterative Solver-Based Long-Step Infeasible Primal-Dual Path-Following Algorithm for Convex QP Based on a Class of Preconditioners

In this paper we present a long-step infeasible primal-dual path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of a preconditioned iterative linear solver. In contrast to the authors’ previous paper \cite{ONE04}, we propose a new linear system, which we refer to as the \emph{hybrid augmented normal equation} (HANE), to … Read more