A Full-Newton Step (n)$ Infeasible Interior-Point Algorithm for Linear Optimization

We present a full-Newton step infeasible interior-point algorithm. It is shown that at most $O(n)$ (inner) iterations suffice to reduce the duality gap and the residuals by the factor $\frac1{e}$. The bound coincides with the best known bound for infeasible interior-point algorithms. It is conjectured that further investigation will improve the above bound to $O(\sqrt{n})$. … Read more

Strengthened Semidefinite Bounds for Codes

We give a hierarchy of semidefinite upper bounds for the maximum size $A(n,d)$ of a binary code of word length $n$ and minimum distance at least $d$. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in $n$; this is based on a result of … Read more

A PTAS for the minimization of polynomials of fixed degree over the simplex

We consider the problem of computing the minimum value $p_{\min}$ taken by a polynomial $p(x)$ of degree $d$ over the standard simplex $\Delta$. This is an NP-hard problem already for degree $d=2$. For any integer $k\ge 1$, by minimizing $p(x)$ over the set of rational points in $\Delta$ with denominator $k$, one obtains a hierarchy … Read more

Rigorous Error Bounds for the Optimal Value in Semidefinite Programming

A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how … Read more

Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which convex transaction costs are incurred to rebalance an investment portfolio. In particular, we consider linear, piecewise linear, and quadratic transaction costs. The Markowitz framework of mean-variance efficiency … Read more

Convex Optimization of Centralized Inventory Operations

Given a finite set of outlets with joint normally distributed demands and identical holding and penalty costs, inventory centralization induces a cooperative cost allocation game with nonempty core. It is well known that for this newsvendor inventory setting the expected cost of centralization can be expressed as a constant multiple of the standard deviation of … Read more

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results of Zhao, who showed that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrier on the first … Read more

On generalized branching methods for mixed integer programming

In this paper we present a restructuring of the computations in Lenstra’s methods for solving mixed integer linear programs. We show that the problem of finding a good branching hyperplane can be formulated on an adjoint lattice of the Kernel lattice of the equality constraints without requiring any dimension reduction. As a consequence the short … Read more

How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds.

By refining a variant of the Klee-Minty example that forces the central path to visit all the vertices of the Klee-Minty n-cube, we exhibit a nearly worst-case example for path-following interior point methods. Namely, while the theoretical iteration-complexity upper bound is O(2^{n}n^{\frac{5}{2}}), we prove that solving this n-dimensional linear optimization problem requires at least $2^n-1$ … Read more

Lowner’s Operator and Spectral Functions in Euclidean Jordan Algebras

We study analyticity, differentiability, and semismoothness of Lowner’s operator and spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in the symmetric matrix space can be generalized within this framework. For example, the metric projection operator over any symmetric cone defined in a Euclidean Jordan algebra … Read more