A Semidefinite Optimization Approach for the Single-Row Layout Problem with Unequal Dimensions

The facility layout problem is concerned with the arrangement of a given number of rectangular facilities so as to minimize the total cost associated with the (known or projected) interactions between them. We consider the one-dimensional space allocation problem (ODSAP), also known as the single-row facility layout problem, which consists in finding an optimal linear … Read more

On Mehrotra-Type Predictor-Corrector Algorithms

In this paper we discuss the polynomiality of Mehrotra-type predictor-corrector algorithms. We consider a variant of the original prototype of the algorithm that has been widely used in several IPM based optimization packages, for which no complexity result is known to date. By an example we show that in this variant the usual Mehrotra-type adaptive … Read more

On the Convergence of a Primal-Dual Second-Order Corrector Interior Point Algorithm for Linear Programming

The Primal-Dual Second Order Corrector (PDSOC) algorithm that we investigate computes on each iteration a corrector direction in addition to the direction of the standard primal-dual path-following interior point method (Kojima et al., 1989) for Linear Programming (LP), in an attempt to improve performance. The corrector is multiplied by the square of the stepsize in … Read more

Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs

The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our … Read more

Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems

We propose a primal-dual path-following Mehrotra-type predictor-corrector method for solving convex quadratic semidefinite programming (QSDP) problems. For the special case when the quadratic term has the form $\frac{1}{2} X \bul (UXU)$, we compute the search direction at each iteration from the Schur complement equation. We are able to solve the Schur complement equation efficiently via … Read more

SparsePOP : a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems

SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on a hierarchy of LMI relaxations of increasing dimensions by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency … Read more

Solving Large-Scale Semidefinite Programs in Parallel

We describe an approach to the parallel and distributed solution of large-scale, block structured semidefinite programs using the spectral bundle method. Various elements of this approach (such as data distribution, an implicitly restarted Lanczos method tailored to handle block diagonal structure, a mixed polyhedral-semidefinite subdifferential model, and other aspects related to parallelism) are combined in … Read more

Reduction of symmetric semidefinite programs using the regular *-representation

We consider semidefinite programming problems on which a permutation group is acting. We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix *-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices. We apply it to extending … Read more

A linear programming reformulation of the standard quadratic optimization problem

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note we show that the SQO problem may be reformulated as an (exponentially sized) linear program. CitationCentER … Read more

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

When solving large-scale semidefinite programming problems by second-order methods, the storage and factorization of the Newton matrix are the limiting factors. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable … Read more