Lift-and-project for 0–1 programming via algebraic geometry

Recently, tools from algebraic geometry have been successfully applied to develop solution schemes for new classes of optimization problems. A central idea in these constructions is to express a polynomial that is positive on a given domain in terms of polynomials of higher degree so that its positivity is readily revealed. This resembles the “lifting” … Read more

The Reduced Density Matrix Method for Electronic Structure Calculations and the Role of Three-Index Representability Conditions

The variational approach for electronic structure based on the two-body reduced density matrix is studied, incorporating two representability conditions beyond the previously used $P$, $Q$ and $G$ conditions. The additional conditions (called $T1$ and $T2$ here) are implicit in work of R.~M.~Erdahl [Int.\ J.\ Quantum Chem.\ {\bf13}, 697–718 (1978)] and extend the well-known three-index diagonal … Read more

On Extracting Maximum Stable Sets in Perfect Graphs Using Lovasz’s Theta Function

We study the maximum stable set problem. For a given graph, we establish several transformations among feasible solutions of different formulations of Lov{\’a}sz’s theta function. We propose reductions from feasible solutions corresponding to a graph to those corresponding to its subgraphs. We develop an efficient, polynomial-time algorithm to extract a maximum stable set in a … Read more

Automatic Scheduling of Hypermedia Documents with Elastic Times]

The problem of automatic scheduling hypermedia documents consists in finding the optimal starting times and durations of objects to be presented, to ensure spatial and temporal consistency of a presentation while respecting limits on shrinking and stretching the ideal duration of each object. The combinatorial nature of the minimization of the number of objects whose … Read more

Sparsity in Sums of Squares of Polynomials

Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of … Read more

Local Minima and Convergence in Low-Rank Semidefinite Programming

The low-rank semidefinite programming problem (LRSDP_r) is a restriction of the semidefinite programming problem (SDP) in which a bound r is imposed on the rank of X, and it is well known that LRSDP_r is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDP_r and … Read more

Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems

Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the … Read more

A Pivotting Procedure for a Class of Second-Order Cone Programming

We propose a pivotting procedure for a class of Second-Order Cone Programming (SOCP) having one second-order cone. We introduce a dictionary, basic variables, nonbasic variables, and other necessary notions to define a pivot for the class of SOCP. In a pivot, two-dimensional SOCP subproblems are solved to decide which variables should be entering to or … Read more

On Tail Decay and Moment Estimates of a Condition Number for Random Linear Conic Systems

In this paper we study the distribution tails and the moments of a condition number which arises in the study of homogeneous systems of linear inequalities. We consider the case where this system is defined by a Gaussian random matrix and characterise the exact decay rates of the distribution tails, improve the existing moment estimates, … Read more

A masked spectral bound for maximum-entropy sampling

We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of the very effective spectral partition bound. Optimization of the masked spectral bound requires the minimization of a nonconvex, nondifferentiable function over a semidefiniteness constraint. We describe a nonlinear affine scaling algorithm to approximately minimize the bound. … Read more