A Strengthened Barvinok-Pataki Bound on SDP Rank

The Barvinok-Pataki bound provides an upper bound on the rank of extreme points of a spectrahedron. This bound depends solely on the number of affine constraints of the problem, i.e., on the algebra of the problem. Specifically, the triangular number of the rank r is upper bounded by the number of affine constraints. We revisit … Read more

Time-Varying Semidefinite Programming: Geometry of the Trajectory of Solutions

In many applications, solutions of convex optimization problems must be updated on-line, as functions of time. In this paper, we consider time-varying semidefinite programs (TV-SDP), which are linear optimization problems in the semidefinite cone whose coefficients (input data) depend on time. We are interested in the geometry of the solution (output data) trajectory, defined as … Read more

Integrated lot-sizing and one-dimensional cutting stock problem with usable leftovers

This paper addresses the integration of the lot-sizing problem and the one-dimensional cutting stock problem with usable leftovers (LSP-CSPUL). This integration aims to minimize the cost of cutting items from objects available in stock, allowing the bringing forward production of items that have known demands in a future planning horizon. The generation of leftovers, that … Read more

Marketing Mix Optimization with Practical Constraints

In this paper, we address a variant of the marketing mix optimization (MMO) problem which is commonly encountered in many industries, e.g., retail and consumer packaged goods (CPG) industries. This problem requires the spend for each marketing activity, if adjusted, be changed by a non-negligible degree (minimum change) and also the total number of activities … Read more

Finite convergence of sum-of-squares hierarchies for the stability number of a graph

We investigate a hierarchy of semidefinite bounds $\vartheta^{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G) -1$ steps. Even the weaker conjecture claiming finite convergence is still open. … Read more

Presolving Linear Bilevel Optimization Problems

Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving … Read more

Infeasibility detection with primal-dual hybrid gradient for large-scale linear programming

We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at hand is assumed to be feasible. When the problem is not feasible, the iterates of the algorithm do … Read more

How do exponential size solutions arise in semidefinite programming?

Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimization problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a … Read more

Moment-SOS hierarchy and exit time of stochastic processes

The moment sum of squares (moment-SOS) hierarchy produces sequences of upper and lower bounds on functionals of the exit time solution of a polynomial stochastic differential equation with polynomial constraints, at the price of solving semidefinite optimization problems of increasing size. In this note we use standard results from elliptic partial differential equation analysis to … Read more

Projection onto the exponential cone: a univariate root-finding problem

The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modeling. In this paper we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a … Read more