A geodesic interior-point method for linear optimization over symmetric cones

We develop a new interior-point method (IPM) for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. In contrast to classical IPMs, we update iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the … Read more

On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming

Second-order necessary optimality conditions for nonlinear conic programming problems that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict complementarity. In this paper we establish a condition of such type for two classes of nonlinear conic problems, namely semidefinite and second-order cone programming, assuming Robinson’s constraint qualification and a generalized form … Read more

Convergence analysis under consistent error bounds

We introduce the notion of consistent error bound functions which provides a unifying framework for error bounds for multiple convex sets. This framework goes beyond the classical Lipschitzian and Holderian error bounds and includes logarithmic and entropic error bound found in the exponential cone. It also includes the error bounds obtainable under the theory of … Read more

Bound Propagation for Linear Inequalities Revisited

In 2011, Korovin and Voronkov (Proceedings of the 23rd International Conference on Automated Deduction, vol. 6803 of Lecture Notes in Computer Science, pp. 369-383) proposed a method based on bound propagation for solving systems of linear inequalities. In this paper, an alternate description of their algorithm which also incorporates an addition that returns a certificate … Read more

Column-Randomized Linear Programs: Performance Guarantees and Applications

We propose a randomized method for solving linear programs with a large number of columns but a relatively small number of constraints. Since enumerating all the columns is usually unrealistic, such linear programs are commonly solved by column generation, which is often still computationally challenging due to the intractability of the subproblem in many applications. … Read more

Necessary and sufficient conditions for rank-one generated cones

A closed convex conic subset $\cS$ of the positive semidefinite (PSD) cone is rank-one generated (ROG) if all of its extreme rays are generated by rank-one matrices. The ROG property of $\cS$ is closely related to the exactness of SDP relaxations of nonconvex quadratically constrained quadratic programs (QCQPs) related to $\cS$. We consider the case … Read more

Ideal formulations for constrained convex optimization problems with indicator variables.

Motivated by modern regression applications, in this paper, we study the convexification of a class of convex optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and combinatorial constraints. Specifically, we give … Read more

Memory-efficient structured convex optimization via extreme point sampling

Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an n × n matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. Citation Department of Combinatorics & Optimization, University of Waterloo, … Read more