Sampling with respect to a class of measures arising in second-order cone optimization with rank constraints

We describe a classof measures on second-order cones as a push-forward of the Cartesian product of a probabilistic measure on positive semi-line corresponding to Gamma distribution and the uniform measure on the sphere Citationreport, Department of Mathematics, University of Notre Dame, July, 2011ArticleDownload View PDF

A Complementarity Partition Theorem for Multifold Conic Systems

Consider a homogeneous multifold convex conic system $$ Ax = 0, \; x\in K_1\times \cdots \times K_r $$ and its alternative system $$ A\transp y \in K_1^*\times \cdots \times K_r^*, $$ where $K_1,\dots, K_r$ are regular closed convex cones. We show that there is canonical partition of the index set $\{1,\dots,r\}$ determined by certain complementarity … Read more

Models and Algorithms for Distributionally Robust Least Squares Problems

We present different robust frameworks using probabilistic ambiguity descriptions of the input data in the least squares problems. The three probability ambiguity descriptions are given by: (1) confidence interval over the first two moments; (2) bounds on the probability measure with moments constraints; (3) confidence interval over the probability measure by using the Kantorovich probability … Read more

Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach

We consider in this paper quadratic programming problems with cardinality and minimum threshold constraints which arise naturally in various real-world applications such as portfolio selection and subset selection in regression. We propose a new semidefinite program (SDP) approach for computing the “best” diagonal decomposition that gives the tightest continuous relaxation of the perspective reformulation. We … Read more

The Globally Uniquely Solvable Property of Second-Order Cone Linear Complementarity Problems

The globally uniquely solvable (GUS) property of the linear transformation of the linear complementarity problems over symmetric cones has been studied recently by Gowda et al. via the approach of Euclidean Jordan algebra. In this paper, we contribute a new approach to characterizing the GUS property of the linear transformation of the second-order cone linear … Read more

Interior Proximal Algorithm with Variable Metric for Second-Order Cone Programming: Applications to Structural Optimization and Support Vector Machines

In this work, we propose an inexact interior proximal type algorithm for solving convex second-order cone programs. This kind of problems consists of minimizing a convex function (possibly nonsmooth) over the intersection of an affine linear space with the Cartesian product of second-order cones. The proposed algorithm uses a distance variable metric, which is induced … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more

Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit

In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobimethods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly … Read more

Tractable Robust Expected Utility and Risk Models for Portfolio Optimization

Expected utility models in portfolio optimization is based on the assumption of complete knowledge of the distribution of random returns. In this paper, we relax this assumption to the knowledge of only the mean, covariance and support information. No additional assumption on the type of distribution such as normality is made. The investor’s utility is … Read more

A p-Cone Sequential Relaxation Procedure for 0-1 Integer Programs

Given a 0-1 integer programming problem, several authors have introduced sequential relaxation techniques — based on linear and/or semidefinite programming — that generate the convex hull of integer points in at most $n$ steps. In this paper, we introduce a sequential relaxation technique, which is based on $p$-order cone programming ($1 \le p \le \infty$). … Read more