Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more

A Geometric View of SDP Exactness in QCQPs and its Applications

Let S denote a subset of Rn defined by quadratic equality and inequality constraints and let S denote its projected semidefinite program (SDP) relaxation. For example, take S and S to be the epigraph of a quadratically constrained quadratic program (QCQP) and the projected epigraph of its SDP relaxation respectively. In this paper, we suggest … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

An echelon form of weakly infeasible semidefinite programs and bad projections of the psd cone

A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has nearly feasible solutions that approximate the constraint set to arbitrary precision. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to “bad” linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe … Read more

Partial Lasserre relaxation for sparse Max-Cut

A common approach to solve or find bounds of polynomial optimization problems like Max-Cut is to use the first level of the Lasserre hierarchy. Higher levels of the Lasserre hierarchy provide tighter bounds, but solving these relaxations is usually computationally intractable. We propose to strengthen the first level relaxation for sparse Max-Cut problems using constraints … Read more

Strengthened SDP Relaxation for an Extended Trust Region Subproblem with an Application to Optimal Power Flow

We study an extended trust region subproblem minimizing a nonconvex function over the hollow ball $r \le \|x\| \le R$ intersected with a full-dimensional second order cone (SOC) constraint of the form $\|x – c\| \le b^T x – a$. In particular, we present a class of valid cuts that improve existing semidefinite programming (SDP) … Read more

Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy

The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is … Read more

Stokes, Gibbs and volume computation of semi-algebraic sets

We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite … Read more

SDP-based bounds for the Quadratic Cycle Cover Problem via cutting plane augmented Lagrangian methods and reinforcement learning

We study the Quadratic Cycle Cover Problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the … Read more

Exact SDP relaxations of quadratically constrained quadratic programs with forest structures

We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with $n$ variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less … Read more