Interior Point Methods for Optimal Experimental Designs

In this paper, we propose a primal IP method for solving the optimal experimental design problem with a large class of smooth convex optimality criteria, including A-, D- and p th mean criterion, and establish its global convergence. We also show that the Newton direction can be computed efficiently when the size of the moment … Read more

Algebraic Relaxations and Hardness Results in Polynomial Optimization and Lyapunov Analysis

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves … Read more

Existence and stability results based on asymptotic analysis for semidefinite linear complementarity problems

This work is devoted to the study of existence and stability results of semidefinite linear complementarity problems (SDLCP). Our approach consists of approximating the variational inequality formulation of the SDLCP by a sequence of suitable chosen variational inequalities. This provides particular estimates for the asymptotic cone of the solution set of the SDLCP. We thus … Read more

A randomized Mirror-Prox method for solving structured large-scale matrix saddle-point problems

In this paper, we derive a randomized version of the Mirror-Prox method for solving some structured matrix saddle-point problems, such as the maximal eigenvalue minimization problem. Deterministic first-order schemes, such as Nesterov’s Smoothing Techniques or standard Mirror-Prox methods, require the exact computation of a matrix exponential at every iteration, limiting the size of the problems … Read more

On the Difficulty of Deciding Asymptotic Stability of Cubic Homogeneous Vector Fields

It is well-known that asymptotic stability (AS) of homogeneous polynomial vector fields of degree one (i.e., linear systems) can be decided in polynomial time e.g. by searching for a quadratic Lyapunov function. Since homogeneous vector fields of even degree can never be AS, the next interesting degree to consider is equal to three. In this … Read more

Lifts of Convex Sets and Cone Factorizations

In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or ‘lift’ of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over … Read more

A Complete Characterization of the Gap between Convexity and SOS-Convexity

Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Approximating the Exponential, the Lanczos Method and an \tilde{O}(m)-Time Spectral Algorithm for Balanced Separator

We give a novel spectral approximation algorithm for the balanced separator problem that, given a graph G, a constant balance b \in (0,1/2], and a parameter \gamma, either finds an \Omega(b)-balanced cut of conductance O(\sqrt{\gamma}) in G, or outputs a certificate that all b-balanced cuts in G have conductance at least \gamma, and runs in … Read more