A Facial Reduction Algorithm for Finding Sparse SOS Representations

Facial reduction algorithm reduces the size of the positive semidefinite cone in SDP. The elimination method for a sparse SOS polynomial ([3]) removes unnecessary monomials for an SOS representation. In this paper, we establish a relationship between a facial reduction algorithm and the elimination method for a sparse SOS polynomial. Citation Technical Report CS-09-02, Department … Read more

On the nonexistence of sum of squares certificates for the BMV conjecture

The algebraic reformulation of the BMV conjecture is equivalent to a family of dimensionfree tracial inequalities involving positive semidefinite matrices. Sufficient conditions for these to hold in the form of algebraic identities involving polynomials in noncommuting variables have been given by Markus Schweighofer and the second author. Later the existence of these certificates has been … Read more

Smoothing techniques for solving semidefinite programs with many constraints

We use smoothing techniques to solve approximately mildly structured semidefinite programs with many constraints. As smoothing techniques require a specific problem format, we introduce an alternative problem formulation that fulfills the structural assumptions. The resulting algorithm has a complexity that depends linearly both on the number of constraints and on the inverse of the accuracy. … Read more

Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm

We propose a Newton-CG primal proximal point algorithm for solving large scale log-determinant optimization problems. Our algorithm employs the essential ideas of the proximal point algorithm, the Newton method and the preconditioned conjugate gradient solver. When applying the Newton method to solve the inner sub-problem, we find that the log-determinant term plays the role of … Read more

On the Central Paths and Cauchy Trajectories in Semidefinite Programming

In this work, we study the properties of central paths, defined with respect to a large class of penalty and barrier functions, for convex semidefinite programs. The type of programs studied here is characterized by the minimization of a smooth and convex objective function subject to a linear matrix inequality constraint. So, it is a … Read more

Alternating Direction Augmented Lagrangian Methods for semidefinite programming

We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables … Read more

Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their … Read more

Mixed Zero-one Linear Programs Under Objective Uncertainty: A Completely Positive Representation

In this paper, we analyze mixed 0-1 linear programs under objective uncertainty. The mean vector and the second moment matrix of the nonnegative objective coefficients is assumed to be known, but the exact form of the distribution is unknown. Our main result shows that computing a tight upper bound on the expected value of a … Read more

On the computational complexity of gap-free duals for semidefinite programming

We consider the complexity of gap-free duals in semidefinite programming. Using the theory of homogeneous cones we provide a new representation of Ramana’s gap-free dual and show that the new formulation has a much better complexity than originally proved by Ramana. Citation COR@L Technical Report, Lehigh University Article Download View On the computational complexity of … Read more

SINCO – a greedy coordinate ascent method for sparse inverse covariance selection problem

In this paper, we consider the sparse inverse covariance selection problem which is equivalent to structure recovery of a Markov Network over Gaussian variables. We introduce a simple but efficient greedy algorithm, called {\em SINCO}, for solving the Sparse INverse COvariance problem. Our approach is based on coordinate ascent method which naturally preserves the sparsity … Read more