How Far Can We Go With Primal-Dual Interior Point Methods for SDP?

Primal–dual interior point methods and the HKM method in particular have been implemented in a number of software packages for semidefinite programming. These methods have performed well in practice on small to medium sized SDP’s. However, primal–dual codes have had some trouble in solving larger problems because of the method’s storage requirements. In this paper … Read more

Behavioral Measures and their Correlation with IPM Iteration Counts on Semi-Definite Programming Problems

We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the … Read more

Large-scale semidefinite programs in electronic structure calculation

Employing the variational approach having the two-body reduced density matrix (RDM) as variables to compute the ground state energies of atomic-molecular systems has been a long time dream in electronic structure theory in chemical physics/physical chemistry. Realization of the RDM approach has benefited greatly from recent developments in semidefinite programming (SDP). We present the actual … Read more

Strengthened Semidefinite Bounds for Codes

We give a hierarchy of semidefinite upper bounds for the maximum size $A(n,d)$ of a binary code of word length $n$ and minimum distance at least $d$. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in $n$; this is based on a result of … Read more

A PTAS for the minimization of polynomials of fixed degree over the simplex

We consider the problem of computing the minimum value $p_{\min}$ taken by a polynomial $p(x)$ of degree $d$ over the standard simplex $\Delta$. This is an NP-hard problem already for degree $d=2$. For any integer $k\ge 1$, by minimizing $p(x)$ over the set of rational points in $\Delta$ with denominator $k$, one obtains a hierarchy … Read more

Rigorous Error Bounds for the Optimal Value in Semidefinite Programming

A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how … Read more

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results of Zhao, who showed that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrier on the first … Read more

On generalized branching methods for mixed integer programming

In this paper we present a restructuring of the computations in Lenstra’s methods for solving mixed integer linear programs. We show that the problem of finding a good branching hyperplane can be formulated on an adjoint lattice of the Kernel lattice of the equality constraints without requiring any dimension reduction. As a consequence the short … Read more

Sums of Random Symmetric Matrices and Applications

Let B_i be deterministic symmetric m\times m matrices, and \xi_i be independent random scalars with zero mean and “of order of one” (e.g., \xi_i are Gaussian with zero mean and unit standard deviation). We are interested in conditions for the “typical norm” of the random matrix S_N = \xi_1B_1+…+\xi_NB_N to be of order of 1. … Read more

Convergent relaxations of polynomial matrix inequalities and static output feedback

Using a moment interpretation of recent results on sum-of-squares decompositions of non-negative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve non-convex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to … Read more